1
|
Li M, Duan X, Li C, You D, Liu L. A novel clinical tool and risk stratification system for predicting the event-free survival of neuroblastoma patients: A TARGET-based study. Medicine (Baltimore) 2023; 102:e34925. [PMID: 37746942 PMCID: PMC10519501 DOI: 10.1097/md.0000000000034925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
Neuroblastoma (NB), considered the most common non-intracranial solid tumor in children, accounts for nearly 8% of pediatric malignancies. This study aimed to develop a simple and practical nomogram to predict event-free survival (EFS) in NB patients and establish a new risk stratification system. In this study, 763 patients primarily diagnosed with NB in the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database were included and randomly assigned to a training set (70%) and a validation set (30%) in a 7:3 ratio. First, the independent prognostic factors of EFS for NB patients were identified through univariate and multivariate Cox regression analyses. Second, a nomogram was created based on these factors and was validated for calibration capability, discriminative, and clinical significance by C-curves, receiver operating characteristic (ROC) curves, and decision curve analysis. Finally, a new risk stratification system was established for NB patients based on the nomogram. The univariate Cox analysis demonstrated that NB patients with age at diagnosis >318 days, International Neuroblastoma Staging System (INSS) stage 4, DNA diploidy, MYCN amplification status, and children oncology group (COG) high-risk group had a relatively poor prognosis. However, according to the multivariate Cox regression analysis, only age, INSS stage, and DNA ploidy were independent predictive factors in NB patients regarding EFS, and a nomogram was created based on these factors. The area under the curve (AUC) values of the ROC curves for the 3-, 5-, and 10-year EFS of this nomogram were 0.681, 0.706, and 0.720, respectively. Additionally, the AUC values of individual independent prognostic factors of EFS were lower than those of the nomogram, suggesting that the developed nomogram had a higher predictive reliability for prognosis. In addition, a new risk stratification system was developed to better stratify NB patients and provide clinical practitioners with a better reference for clinical decision-making. NB patients' EFS could be predicted more accurately and easily through the constructed nomogram and event-occurrence risk stratification system, allowing clinicians to better differentiate NB patients and establish individualized treatment plans to maximize patient benefits.
Collapse
Affiliation(s)
- Mingzhen Li
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Nanguan District, Changchun, Jilin, People’s Republic of China
| | - Xiaoying Duan
- Department of Acupuncture and moxibustion, Second Hospital of Jilin University, Nanguan District, Changchun, Jilin, People’s Republic of China
| | - Chunyan Li
- Department of Endocrinology, The Affiliated Hospital of Beihua University, Chuanying District, Jilin, People’s Republic of China
| | - Di You
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Nanguan District, Changchun, Jilin, People’s Republic of China
| | - Linlin Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Nanguan District, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
2
|
Singh A, Rawat S, Yadav G, Kushwaha R, Verma SP, Singh US. Study of Hemato-morphological Features in Neuroblastoma Infiltrating Marrow. J Lab Physicians 2022. [DOI: 10.1055/s-0042-1758667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Objective Neuroblastoma typically affects children within the first 5 years of life and accounts for 10% of all pediatric malignancies. Neuroblastoma at onset may manifest as a localized or metastatic illness. The aim of this study was to identify hematomorphological features in neuroblastoma infiltrating marrow as well as to ascertain the prevalence of bone marrow infiltration in neuroblastoma.
Materials and Methods This retrospective study included newly diagnosed 79 cases of neuroblastoma, which were referred for bone marrow examination for the staging of the disease. Medical records were retrieved to acquire hematomorphological findings of peripheral blood and bone marrow smears. Statistical Package for Social Sciences, IBM Inc., USA, version 21.0 was used to analyze the data.
Results The interquartile age range of neuroblastoma cases was 24.0 to 72.0 months (median = 48 months) with a male to female ratio of 2.7:1. Also, 55.6% (44/79) of cases in the study population showed evidence of marrow infiltration. The bone marrow infiltration was significantly linked to thrombocytopenia (p = 0.043) and nucleated red blood cells (p = 0.003) in peripheral blood. The bone marrow smears of cases with infiltration showed a significant shift to the left in the myeloid series (p = 0.001) and an increased number of erythroid cells (p = 0.001).
Conclusion For neuroblastoma patients, a diligent, exhaustive search for infiltrating cells in bone marrow is advised if thrombocytopenia or nucleated red blood cells are identified on a peripheral blood smear and bone marrow smears showed myeloid left shift with an increased number of erythroid cells.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Pathology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Shalini Rawat
- Department of Pathology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Geeta Yadav
- Department of Pathology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Rashmi Kushwaha
- Department of Pathology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Shailendra Prasad Verma
- Department of Clinical Hematology, King George Medical University, Lucknow, Uttar Pradesh, India
| | - Uma S. Singh
- Department of Pathology, King George Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Liang SW, Chen G, Luo YG, Chen P, Gu JH, Xu QQ, Dang YW, Qin LT, Lu HP, Huang WT, Huang ZG, Gao L, Chen JB. Nomogram for predicting overall survival in children with neuroblastoma based on SEER database. Ann Surg Treat Res 2020; 99:118-126. [PMID: 32802817 PMCID: PMC7406400 DOI: 10.4174/astr.2020.99.2.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose This study was performed to establish and validate a nomogram for predicting the overall survival in children with neuroblastoma. Methods The latest clinical data of neuroblastoma in Surveillance, Epidemiology, and End Results (SEER) database was extracted from 2000 to 2016. The cases included were randomly divided into training and validation cohorts. The survival curves were drawn with a Kaplan-Meier estimator to investigate the influences of certain single factors on overall survival. Also, least absolute shrinkage and selection operator regression was applied to further select the prognostic variables for neuroblastoma. Additionally, receiver operating characteristic (ROC) curves and calibration curves were used to evaluate the accuracy of the nomogram. Results In total, 1,262 patients were collected and 8 independent prognostic factors were achieved, including patients' age, sex, race, tumor grade, radiotherapy, chemotherapy, tumor site, and tumor size. Then we constructed a nomogram by using the data of the training cohort with 886 cases. Subsequently, the nomogram was validated internally and externally with 886 and 376 cases, respectively. The internal validation revealed that the area under the curves (AUC) of ROC curves of 1-, 3-, and 5-year overall survival were 0.69, 0.78, and 0.81, respectively. Accordingly, the external validation also showed that the AUC of 1-, 3-, and 5-year overall survival were all ≥0.69. Both methods of validation demonstrated that the predictive calibration curves were consistent with standard curves. Conclusion The nomogram possess the potential to be a new tool in predicting the survival rate of neuroblastoma patients.
Collapse
Affiliation(s)
- Song-Wu Liang
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi-Ge Luo
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peng Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin-Han Gu
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiong-Qian Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li-Ting Qin
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui-Ping Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wen-Ting Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Gao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jia-Bo Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Hua R, Zhuo Z, Ge L, Zhu J, Yuan L, Chen C, Liu J, Cheng J, Zhou H, Zhang J, Xia H, Zhang X, He J. LIN28A gene polymorphisms modify neuroblastoma susceptibility: A four-centre case-control study. J Cell Mol Med 2020; 24:1059-1066. [PMID: 31747721 PMCID: PMC6933387 DOI: 10.1111/jcmm.14827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 02/05/2023] Open
Abstract
Neuroblastoma ranks the most common seen solid tumour in childhood. Overexpression of LIN28A gene has been linked to the development of multiple human malignancies, but the relationship between LIN28A single nucleotide polymorphisms (SNPs) and neuroblastoma susceptibility is still under debate. Herein, we evaluated the correlation of four potentially functional LIN28A SNPs (rs3811464 G>A, rs3811463 T>C, rs34787247 G>A, and rs11247957 G>A) and neuroblastoma susceptibility in 505 neuroblastoma patients and 1070 controls from four independent hospitals in China. The correlation strengths were determined by using odds ratios (ORs) and corresponding 95% confidence intervals (CIs). Among these SNPs, rs34787247 G>A exhibited a significant association with increased susceptibility in neuroblastoma (GA vs GG: adjusted OR = 1.30, 95% CI = 1.03-1.64; AA vs GG: adjusted OR = 2.51, 95% CI = 1.36-4.64, AA/GA vs GG: adjusted OR = 1.42, 95% CI = 1.12-1.80, AA vs GG/GA: adjusted OR = 2.39, 95% CI = 1.29-4.42). Furthermore, the combined analysis of risk genotypes revealed that subjects carrying three risk genotypes (adjusted OR = 1.64, 95% CI = 1.02-2.63) are more inclined to develop neuroblastoma than those without risk genotype, and so do carriers of 1-4 risk genotypes (adjusted OR = 1.26, 95% CI = 1.01-1.56). Stratification analysis further revealed risk effect of rs3811464 G>A, rs34787247 G>A and 1-4 risk genotypes in some subgroups. Haplotype analysis of these four SNPs yields two haplotypes significantly correlated with increased neuroblastoma susceptibility. Overall, our finding indicated that LIN28A SNPs, especially rs34787247 G>A, may increase neuroblastoma risk.
Collapse
Affiliation(s)
- Rui‐Xi Hua
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
- Department of OncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Zhenjian Zhuo
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Lili Ge
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou UniversityHenan Children's HospitalZhengzhou Children's HospitalZhengzhouChina
| | - Jinhong Zhu
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
- Department of Clinical LaboratoryBiobankHarbin Medical University Cancer HospitalHarbinChina
| | - Li Yuan
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Chongfen Chen
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou UniversityHenan Children's HospitalZhengzhou Children's HospitalZhengzhouChina
| | - Jing Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou UniversityHenan Children's HospitalZhengzhou Children's HospitalZhengzhouChina
| | - Jiwen Cheng
- Department of Pediatric SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jiao Zhang
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Huimin Xia
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Xianwei Zhang
- Department of Pediatric Oncologic SurgeryChildren's Hospital Affiliated to Zhengzhou UniversityHenan Children's HospitalZhengzhou Children's HospitalZhengzhouChina
| | - Jing He
- Department of Pediatric SurgeryGuangzhou Institute of PediatricsGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|