1
|
Takemiya K, Wang S, Liu Y, Murthy N, Goodman MM, Taylor WR. Isothermal titration calorimetry analysis of the binding between the maltodextrin binding protein malE of Staphylococcus aureus with maltodextrins of various lengths. Biochem Biophys Res Commun 2024; 695:149467. [PMID: 38211531 PMCID: PMC10842747 DOI: 10.1016/j.bbrc.2023.149467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
Staphylococcus aureus (S. aureus), a Gram-positive bacterium, causes a wide range of infections, and diagnosis at an early stage is challenging. Targeting the maltodextrin transporter has emerged as a promising strategy for imaging bacteria and has been able to image a wide range of bacteria including S. aureus. However, little is known about the maltodextrin transporter in S. aureus, and this prevents new S. aureus specific ligands for the maltodextrin transporter from being developed. In Gram-positive bacteria, including S. aureus, the first step of maltodextrin transport is the binding of the maltodextrin-binding protein malE to maltodextrins. Thus, understanding the binding affinity and characteristics of malE from S. aureus is important to developing efficient maltodextrin-based imaging probes. We evaluated the affinity of malE of S. aureus to maltodextrins of various lengths. MalE of S. aureus (SAmalE) was expressed in E. coli BL21(DE3) and purified by Ni-NTA resin. The affinities of SAmalE to maltodextrins were evaluated with isothermal titration calorimetry. SAmalE has low affinity to maltose but binds to maltotriose and longer maltodextrins up to maltoheptaose with affinities up to Ka = 9.02 ± 0.49 × 105 M-1. SAmalE binding to maltotriose-maltoheptaose was exothermic and fit a single-binding site model. The van't Hoff enthalpy in the binding reaction of SAmalE with maltotriose was 9.9 ± 1.3 kcal/mol, and the highest affinity of SAmalE was observed with maltotetraose with Ka = 9.02 ± 0.49 × 105 M-1. In the plot of ΔH-T*ΔS, the of Enthalpy-Entropy Compensation effect was observed in binding reaction of SAmalE to maltodextrins. Acarbose and maltotetraiol bind with SAmalE indicating that SAmalE is tolerant of modifications on both the reducing and non-reducing ends of maltodextrins. Our results show that unlike ECmalE and similar to the maltodextrin binding protein of Streptococci, SAmalE primarily binds to maltodextrins via hydrogen bonds. This is distinct from the maltodextrin binding protein of Streptococci, SAmalE that binds to maltotetraiol with high affinity. Understanding the binding characteristics and tolerance to maltodextrins modifications by maltodextrin binding proteins will hopefully provide the basis for developing bacterial species-specific maltodextrin-based imaging probes.
Collapse
Affiliation(s)
- Kiyoko Takemiya
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1750 Haygood Dr. NE, Atlanta, GA, 30322, USA.
| | - Shelly Wang
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1750 Haygood Dr. NE, Atlanta, GA, 30322, USA
| | - Yu Liu
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1750 Haygood Dr. NE, Atlanta, GA, 30322, USA
| | - Niren Murthy
- Department of Bioengineering, Stanley Hall 306 University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Mark M Goodman
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University, 1364 Clifton Road NE, Atlanta, GA, 30322, USA; Center for Systems Imaging, Emory University, 1364 Clifton Rd NE, Atlanta, 30322, Georgia
| | - W Robert Taylor
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 1750 Haygood Dr. NE, Atlanta, GA, 30322, USA; Joseph Maxwell Cleland Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA; Wallace H. Coulter Department of Biomedical Engineering School of Medicine, Emory University, 1750 Haygood Dr. NE, Atlanta, GA, 30322, USA
| |
Collapse
|
2
|
Jacso T, Schneider E, Rupp B, Reif B. Substrate transport activation is mediated through second periplasmic loop of transmembrane protein MalF in maltose transport complex of Escherichia coli. J Biol Chem 2012; 287:17040-17049. [PMID: 22451670 DOI: 10.1074/jbc.m112.340679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a recent study we described the second periplasmic loop P2 of the transmembrane protein MalF (MalF-P2) of the maltose ATP-binding cassette transporter (MalFGK(2)-E) as an important element in the recognition of substrate by the maltose-binding protein MalE. In this study, we focus on MalE and find that MalE undergoes a structural rearrangement after addition of MalF-P2. Analysis of residual dipolar couplings (RDCs) shows that binding of MalF-P2 induces a semiopen state of MalE in the presence and absence of maltose, whereas maltose is retained in the binding pocket. These data are in agreement with paramagnetic relaxation enhancement experiments. After addition of MalF-P2, an increased solvent accessibility for residues in the vicinity of the maltose-binding site of MalE is observed. MalF-P2 is thus not only responsible for substrate recognition, but also directly involved in activation of substrate transport. The observation that substrate-bound and substrate-free MalE in the presence of MalF-P2 adopts a similar semiopen state hints at the origin of the futile ATP hydrolysis of MalFGK(2)-E.
Collapse
Affiliation(s)
- Tomas Jacso
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany; Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Erwin Schneider
- Institut für Biologie, AG Bakterienphysiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | - Bernd Rupp
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany
| | - Bernd Reif
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin-Buch, Germany; Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|