1
|
Mannuronan C-5 Epimerases: Review of Activity Assays, Enzyme Characteristics, Structure, and Mechanism. Catalysts 2022. [DOI: 10.3390/catal13010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mannuronan C-5 epimerases (ManC5-Es) are produced by brown algae and some bacteria, such as Azotobacter and some Pseudomonas species. It can convert the transformation of β-D-mannuronic acid (M) to α-L-guluronic acid (G) in alginate with different patterns of epimerization. Alginate with different compositions and monomer sequences possess different properties and functions, which have been utilized in industries for various purposes. Therefore, ManC5-Es are key enzymes that are involved in the modifications of alginate for fuel, chemical, and industrial applications. Focusing on ManC5-Es, this review introduces and summarizes the methods of ManC5-Es activity assay especially the most widely used nuclear magnetic resonance spectroscopy method, characterization of the ManC5-Es from different origins especially the research progress of its enzymatic properties and product block distributions, and the catalytic mechanism of ManC5-E based on the resolved enzyme structures. Additionally, some potential future research directions are also outlooked.
Collapse
|
2
|
Ci F, Jiang H, Zhang Z, Mao X. Properties and potential applications of mannuronan C5-epimerase: A biotechnological tool for modifying alginate. Int J Biol Macromol 2021; 168:663-675. [PMID: 33220370 DOI: 10.1016/j.ijbiomac.2020.11.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 11/23/2022]
Abstract
Given the excellent characteristics of alginate, it is an industrially important polysaccharide. Mannuronan C5-epimerase (MC5E) is an alginate-modifying enzyme that catalyzes the conversion of β-D-mannuronate (M) to its C5 epimer α-L-guluronate (G) in alginate. Both the biological activities and physical properties of alginate are determined by M/G ratios and distribution patterns. Therefore, MC5E is regarded as a biotechnological tool for modifying and processing alginate. Various MC5Es derived from brown algae, Pseudomonas and Azotobacter have been isolated and characterized. With the rapid development of structural biology, the crystal structures and catalytic mechanisms of several MC5Es have been elucidated. It is necessary to comprehensively understand the research status of this alginate-modifying enzyme. In this review, the properties and potential applications of MC5Es isolated from different kinds of organisms are summarized and reviewed. Moreover, future research directions of MC5Es as well as strategies to enhance their properties are elucidated, highlighted, and prospected.
Collapse
Affiliation(s)
- Fangfang Ci
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Zhaohui Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
3
|
Buchinger E, Knudsen DH, Behrens MA, Pedersen JS, Aarstad OA, Tøndervik A, Valla S, Skjåk-Bræk G, Wimmer R, Aachmann FL. Structural and functional characterization of the R-modules in alginate C-5 epimerases AlgE4 and AlgE6 from Azotobacter vinelandii. J Biol Chem 2014; 289:31382-96. [PMID: 25266718 DOI: 10.1074/jbc.m114.567008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The bacterium Azotobacter vinelandii produces a family of seven secreted and calcium-dependent mannuronan C-5 epimerases (AlgE1-7). These epimerases are responsible for the epimerization of β-D-mannuronic acid (M) to α-L-guluronic acid (G) in alginate polymers. The epimerases display a modular structure composed of one or two catalytic A-modules and from one to seven R-modules having an activating effect on the A-module. In this study, we have determined the NMR structure of the three individual R-modules from AlgE6 (AR1R2R3) and the overall structure of both AlgE4 (AR) and AlgE6 using small angle x-ray scattering. Furthermore, the alginate binding ability of the R-modules of AlgE4 and AlgE6 has been studied with NMR and isothermal titration calorimetry. The AlgE6 R-modules fold into an elongated parallel β-roll with a shallow, positively charged groove across the module. Small angle x-ray scattering analyses of AlgE4 and AlgE6 show an overall elongated shape with some degree of flexibility between the modules for both enzymes. Titration of the R-modules with defined alginate oligomers shows strong interaction between AlgE4R and both oligo-M and MG, whereas no interaction was detected between these oligomers and the individual R-modules from AlgE6. A combination of all three R-modules from AlgE6 shows weak interaction with long M-oligomers. Exchanging the R-modules between AlgE4 and AlgE6 resulted in a novel epimerase called AlgE64 with increased G-block forming ability compared with AlgE6.
Collapse
Affiliation(s)
- Edith Buchinger
- From the Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Frederik Bajers vej 7H, DK-9220 Aalborg, Denmark, the Department of Biotechnology, Norwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway
| | - Daniel H Knudsen
- From the Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Frederik Bajers vej 7H, DK-9220 Aalborg, Denmark
| | - Manja A Behrens
- the Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000, Denmark, and
| | - Jan Skov Pedersen
- the Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000, Denmark, and
| | - Olav A Aarstad
- the Department of Biotechnology, Norwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway
| | - Anne Tøndervik
- the Department of Bioprocess Technology, SINTEF Materials and Chemistry, N-7465 Trondheim, Norway
| | - Svein Valla
- the Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000, Denmark, and
| | - Gudmund Skjåk-Bræk
- the Department of Biotechnology, Norwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway
| | - Reinhard Wimmer
- From the Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Frederik Bajers vej 7H, DK-9220 Aalborg, Denmark
| | - Finn L Aachmann
- the Department of Biotechnology, Norwegian Biopolymer Laboratory (NOBIPOL), Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway,
| |
Collapse
|
4
|
Andreassen T, Buchinger E, Skjåk-Bræk G, Valla S, Aachmann FL. 1H, 13C and 15N resonances of the AlgE62 subunit from Azotobacter vinelandii mannuronan C5-epimerase. BIOMOLECULAR NMR ASSIGNMENTS 2011; 5:147-149. [PMID: 21188559 PMCID: PMC3166602 DOI: 10.1007/s12104-010-9288-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 12/13/2010] [Indexed: 05/30/2023]
Abstract
The 17.7 kDa R2 module from Azotobacter vinelandii mannronan C5-epimerase AlgE6 has been isotopically labeled ((13)C,(15)N) and recombinantly expressed. Here we report the (1)H, (13)C, (15)N resonance assignment of AlgE6R2.
Collapse
Affiliation(s)
- Trygve Andreassen
- Department of Biotechnology, Norwegian University of Science and Techology, Sem Sælands vei 6/8, 7491 Trondheim, Norway
| | - Edith Buchinger
- Department of Biotechnology, Norwegian University of Science and Techology, Sem Sælands vei 6/8, 7491 Trondheim, Norway
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, 9000 Aalborg, Denmark
| | - Gudmund Skjåk-Bræk
- Department of Biotechnology, Norwegian University of Science and Techology, Sem Sælands vei 6/8, 7491 Trondheim, Norway
| | - Svein Valla
- Department of Biotechnology, Norwegian University of Science and Techology, Sem Sælands vei 6/8, 7491 Trondheim, Norway
| | - Finn L. Aachmann
- Department of Biotechnology, Norwegian University of Science and Techology, Sem Sælands vei 6/8, 7491 Trondheim, Norway
| |
Collapse
|