1
|
Heravi S, Power JVD, Yethiraj A, Booth V. The effects of biological crowders on fibrillization, structure, diffusion, and conformational dynamics of α-synuclein. Protein Sci 2024; 33:e4894. [PMID: 38358134 PMCID: PMC10868423 DOI: 10.1002/pro.4894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
α-synuclein is an intrinsically disordered protein (IDP) whose aggregation in presynaptic neuronal cells is a pathological hallmark of Lewy body formation and Parkinson's disease. This aggregation process is likely affected by the crowded macromolecular cellular environment. In this study, α-synuclein was studied in the presence of both a synthetic crowder, Ficoll70, and a biological crowder composed of lysed cells that better mimics the biocomplexity of the cellular environment. 15 N-1 H HSQC NMR results show similar α-synuclein chemical shifts in non-crowded and all crowded conditions implying that it remains similarly unstructured in all conditions. Nevertheless, both HSQC NMR and fluorescence measurements indicate that, only in the cell lysate, α-synuclein forms aggregates over a timescale of 48 h. 15 N-edited diffusion measurements indicate that all crowders slow down the α-synuclein's diffusivity. Interestingly, at high concentrations, α-synuclein diffuses faster in cell lysate than in Ficoll70, possibly due to additional soft (e.g., electrostatic or hydrophobic) interactions. 15 N-edited relaxation measurements show that some residues are more mobile in cell lysate than in Ficoll70; the rates that are most different are predominantly in hydrophobic residues. We thus examined cell lysates with reduced hydrophobicity and found slower dynamics (higher relaxation rates) in several α-synuclein residues. Taken together, these experiments suggest that while cell lysate does not substantially affect α-synuclein structure (HSQC spectra), it does affect chain dynamics and translational diffusion, and strongly affects aggregation over a timescale of days, in a manner that is different from either no crowder or an artificial crowder: soft hydrophobic interactions are implicated.
Collapse
Affiliation(s)
- Sina Heravi
- Department of BiochemistryMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Jude Vincent Dobbin Power
- Department of BiochemistryMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Anand Yethiraj
- Department of Physics and Physical OceanographyMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| | - Valerie Booth
- Department of BiochemistryMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
- Department of Physics and Physical OceanographyMemorial University of NewfoundlandSt. John'sNewfoundland and LabradorCanada
| |
Collapse
|
2
|
Yamashita S, O Kamatari Y, Honda R, Niwa A, Tomiata H, Hara A, Kuwata K. Monomeric a-synuclein (aS) inhibits amyloidogenesis of human prion protein (hPrP) by forming a stable aS-hPrP hetero-dimer. Prion 2021; 15:37-43. [PMID: 33849375 PMCID: PMC8049198 DOI: 10.1080/19336896.2021.1910176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intermolecular interaction between hPrP and αS was investigated using high-speed atomic force microscopy, dynamic light scattering, and nuclear magnetic resonance. We found that hPrP spontaneously gathered and naturally formed oligomers. Upon addition of monomer αS with a disordered conformation, poly-dispersive property of hPrP was lost, and hetero-dimer formation started quite coherently, and further oligomerization was not observed. Solution structure of hPrP-αS dimer was firstly characterized using hetero-nuclear NMR spectroscopy. In this hetero-dimeric complex, C-terminal helical region of hPrP was in the molten-globule like state, while specific sites including hot spot and C-terminal region of αS selectively interacted with hPrP. Thus αS may suppress amyloidogenesis of hPrP by trapping the hPrP intermediate by the formation of a stable hetero-dimer with hPrP. Abbreviations: hPrP, human prion protein of amino acid residues of 23-231; PrPC, cellular form of prion protein; PrPSc, scrapie form of prion protein, HS-AFM; high speed atomic force microscopy; αS, α-synuclein; DLS, dynamic light scattering
Collapse
Affiliation(s)
- Satoshi Yamashita
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Yuji O Kamatari
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan.,Institute for Glyco-core Research, Tokai National Higher Education and Research System, Gifu, Japan
| | - Ryo Honda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Tokai National Higher Education System, Gifu, Japan
| | - Hiroyuki Tomiata
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Tokai National Higher Education System, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Tokai National Higher Education System, Gifu, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan.,Department of Gene and Development, Gifu University School of Medicine, Tokai National Higher Education and Research System, Gifu, Japan
| |
Collapse
|
3
|
Dhakal S, Wyant CE, George HE, Morgan SE, Rangachari V. Prion-like C-Terminal Domain of TDP-43 and α-Synuclein Interact Synergistically to Generate Neurotoxic Hybrid Fibrils. J Mol Biol 2021; 433:166953. [PMID: 33771571 DOI: 10.1016/j.jmb.2021.166953] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022]
Abstract
Aberrant aggregation and amyloid formation of tar DNA binding protein (TDP-43) and α-synuclein (αS) underlie frontotemporal dementia (FTD) and Parkinson's disease (PD), respectively. Amyloid inclusions of TDP-43 and αS are also commonly co-observed in amyotrophic lateral sclerosis (ALS), dementia with Lewy bodies (DLB) and Alzheimer disease (AD). Emerging evidence from cellular and animal models show colocalization of the TDP-43 and αS aggregates, raising the possibility of direct interactions and co-aggregation between the two proteins. In this report, we set out to answer this question by investigating the interactions between αS and prion-like pathogenic C-terminal domain of TDP-43 (TDP-43 PrLD). PrLD is an aggregation-prone fragment generated both by alternative splicing as well as aberrant proteolytic cleavage of full length TDP-43. Our results indicate that two proteins interact in a synergistic manner to augment each other's aggregation towards hybrid fibrils. While monomers, oligomers and sonicated fibrils of αS seed TDP-43 PrLD monomers, TDP-43 PrLD fibrils failed to seed αS monomers indicating selectivity in interactions. Furthermore, αS modulates liquid droplets formed by TDP-43 PrLD and RNA to promote insoluble amyloid aggregates. Importantly, the cross-seeded hybrid aggregates show greater cytotoxicity as compared to the individual homotypic aggregates suggesting that the interactions between the two proteins have a discernable impact on cellular functions. Together, these results bring forth insights into TDP-43 PrLD - αS interactions that could help explain clinical and pathological presentations in patients with co-morbidities involving the two proteins.
Collapse
Affiliation(s)
- Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Courtney E Wyant
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Hannah E George
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Sarah E Morgan
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| |
Collapse
|
4
|
Kakita VMR, Rachineni K, Bopardikar M, Hosur RV. NMR supersequences with real-time homonuclear broadband decoupling: Sequential acquisition of protein and small molecule spectra in a single experiment. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 297:108-112. [PMID: 30384129 DOI: 10.1016/j.jmr.2018.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/08/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
NOAH (NMR byOrderedAcquisition using 1H-detection) type of pure shift NMR pulse scheme has been designed for the efficient utilization of magnetization that presents in a spin-system under consideration. The proposed strategy, PROSMASH-HSQC2 (PROtein-HSQC and SMAll molecule-HSQC Signals with Homodecoupling) uses the real-time BIRD pure shift NMR strategy and two HSQC spectra (13C-HSQC for small molecules and 15N-HSQC for 15N-isotopic labelled proteins) can be recorded in a single NMR experiment. Thus, this method permits precise determination of drug-protein interactions at atomic levels by monitoring the chemical shift perturbations, and will have potential applications in drug discovery programs.
Collapse
Affiliation(s)
- Veera Mohana Rao Kakita
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz, Mumbai 400 098, India
| | - Kavitha Rachineni
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz, Mumbai 400 098, India
| | - Mandar Bopardikar
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), 1-Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Ramakrishna V Hosur
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz, Mumbai 400 098, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
5
|
α-Synuclein interacts directly but reversibly with psychosine: implications for α-synucleinopathies. Sci Rep 2018; 8:12462. [PMID: 30127535 PMCID: PMC6102231 DOI: 10.1038/s41598-018-30808-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/01/2018] [Indexed: 12/27/2022] Open
Abstract
Aggregation of α-synuclein, the hallmark of α-synucleinopathies such as Parkinson’s disease, occurs in various glycosphingolipidoses. Although α-synuclein aggregation correlates with deficiencies in the lysosomal degradation of glycosphingolipids (GSL), the mechanism(s) involved in this aggregation remains unclear. We previously described the aggregation of α-synuclein in Krabbe’s disease (KD), a neurodegenerative glycosphingolipidosis caused by lysosomal deficiency of galactosyl-ceramidase (GALC) and the accumulation of the GSL psychosine. Here, we used a multi-pronged approach including genetic, biophysical and biochemical techniques to determine the pathogenic contribution, reversibility, and molecular mechanism of aggregation of α-synuclein in KD. While genetic knock-out of α-synuclein reduces, but does not completely prevent, neurological signs in a mouse model of KD, genetic correction of GALC deficiency completely prevents α-synuclein aggregation. We show that psychosine forms hydrophilic clusters and binds the C-terminus of α-synuclein through its amino group and sugar moiety, suggesting that psychosine promotes an open/aggregation-prone conformation of α-synuclein. Dopamine and carbidopa reverse the structural changes of psychosine by mediating a closed/aggregation-resistant conformation of α-synuclein. Our results underscore the therapeutic potential of lysosomal correction and small molecules to reduce neuronal burden in α-synucleinopathies, and provide a mechanistic understanding of α-synuclein aggregation in glycosphingolipidoses.
Collapse
|
6
|
Ranjan P, Kumar A. Perturbation in Long-Range Contacts Modulates the Kinetics of Amyloid Formation in α-Synuclein Familial Mutants. ACS Chem Neurosci 2017; 8:2235-2246. [PMID: 28759722 DOI: 10.1021/acschemneuro.7b00149] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The characteristic cross-β-sheet-rich amyloid fibril formation by intrinsically disordered α-synuclein proteins is one of the pathological hallmarks of Parkinson's disease. Although unstructured in solution, the presence of autoinhibitory long-range contacts in monomeric form prevents protein aggregation. Out of the various factors that affect the rate of amyloid formation, familial mutations play an important role in α-synuclein aggregation. Even though these mutations are believed to form an aggregation-prone intermediate by perturbing these contacts, the correlation between perturbation and rate of fibril formation is not very straightforward. A combination of solution and solid-state NMR in conjunction with other biophysical methods has been used to identify the underlying mechanism behind the anomaly in the rate of aggregation for the novel mutants H50Q (fast aggregating) and G51D (slow aggregating). Perturbation of long-range contacts at the mutation sites and C-termini in all of the six familial mutants of α-synuclein during the diseased condition (acidic pH) was observed. These contacts get rearranged at physiological pH resulting in the shielding of mutation sites. Additional contacts at the mutation site in a slow aggregating mutant could be the reason for slower aggregation. Indeed, these contacts provide more rigidity to the monomeric G51D. Nonetheless, these mutations did not alter the overall secondary structure. The differential pattern of the long-range contacts at the monomeric level resulted in the perturbation of the fibrillar-core region, which was evident in the solid-state NMR spectra. Our results provide valuable insights in understanding the effect of long-range contacts on the aggregation of α-synuclein and its mutants.
Collapse
Affiliation(s)
- Priyatosh Ranjan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
7
|
Chorell E, Andersson E, Evans ML, Jain N, Götheson A, Åden J, Chapman MR, Almqvist F, Wittung-Stafshede P. Bacterial Chaperones CsgE and CsgC Differentially Modulate Human α-Synuclein Amyloid Formation via Transient Contacts. PLoS One 2015; 10:e0140194. [PMID: 26465894 PMCID: PMC4605646 DOI: 10.1371/journal.pone.0140194] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/22/2015] [Indexed: 11/20/2022] Open
Abstract
Amyloid formation is historically associated with cytotoxicity, but many organisms produce functional amyloid fibers (e.g., curli) as a normal part of cell biology. Two E. coli genes in the curli operon encode the chaperone-like proteins CsgC and CsgE that both can reduce in vitro amyloid formation by CsgA. CsgC was also found to arrest amyloid formation of the human amyloidogenic protein α-synuclein, which is involved in Parkinson's disease. Here, we report that the inhibitory effects of CsgC arise due to transient interactions that promote the formation of spherical α-synuclein oligomers. We find that CsgE also modulates α-synuclein amyloid formation through transient contacts but, in contrast to CsgC, CsgE accelerates α-synuclein amyloid formation. Our results demonstrate the significance of transient protein interactions in amyloid regulation and emphasize that the same protein may inhibit one type of amyloid while accelerating another.
Collapse
Affiliation(s)
- Erik Chorell
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Margery L. Evans
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Neha Jain
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anna Götheson
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Jörgen Åden
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Matthew R. Chapman
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | | |
Collapse
|
8
|
Karamanos TK, Kalverda AP, Thompson GS, Radford SE. Mechanisms of amyloid formation revealed by solution NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 88-89:86-104. [PMID: 26282197 PMCID: PMC4568309 DOI: 10.1016/j.pnmrs.2015.05.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 05/29/2023]
Abstract
Amyloid fibrils are proteinaceous elongated aggregates involved in more than fifty human diseases. Recent advances in electron microscopy and solid state NMR have allowed the characterization of fibril structures to different extents of refinement. However, structural details about the mechanism of fibril formation remain relatively poorly defined. This is mainly due to the complex, heterogeneous and transient nature of the species responsible for assembly; properties that make them difficult to detect and characterize in structural detail using biophysical techniques. The ability of solution NMR spectroscopy to investigate exchange between multiple protein states, to characterize transient and low-population species, and to study high molecular weight assemblies, render NMR an invaluable technique for studies of amyloid assembly. In this article we review state-of-the-art solution NMR methods for investigations of: (a) protein dynamics that lead to the formation of aggregation-prone species; (b) amyloidogenic intrinsically disordered proteins; and (c) protein-protein interactions on pathway to fibril formation. Together, these topics highlight the power and potential of NMR to provide atomic level information about the molecular mechanisms of one of the most fascinating problems in structural biology.
Collapse
Affiliation(s)
- Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Arnout P Kalverda
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Gary S Thompson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
9
|
Smith AE, Zhou LZ, Pielak GJ. Hydrogen exchange of disordered proteins in Escherichia coli. Protein Sci 2015; 24:706-13. [PMID: 25611326 DOI: 10.1002/pro.2643] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/16/2023]
Abstract
A truly disordered protein lacks a stable fold and its backbone amide protons exchange with solvent at rates predicted from studies of unstructured peptides. We have measured the exchange rates of two model disordered proteins, FlgM and α-synuclein, in buffer and in Escherichia coli using the NMR experiment, SOLEXSY. The rates are similar in buffer and cells and are close to the rates predicted from data on small, unstructured peptides. This result indicates that true disorder can persist inside the crowded cellular interior and that weak interactions between proteins and macromolecules in cells do not necessarily affect intrinsic rates of exchange.
Collapse
Affiliation(s)
- Austin E Smith
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, 27599
| | | | | |
Collapse
|
10
|
Parigi G, Rezaei-Ghaleh N, Giachetti A, Becker S, Fernandez C, Blackledge M, Griesinger C, Zweckstetter M, Luchinat C. Long-range correlated dynamics in intrinsically disordered proteins. J Am Chem Soc 2014; 136:16201-9. [PMID: 25331250 DOI: 10.1021/ja506820r] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Intrinsically disordered proteins (IDPs) are involved in a wide variety of physiological and pathological processes and are best described by ensembles of rapidly interconverting conformers. Using fast field cycling relaxation measurements we here show that the IDP α-synuclein as well as a variety of other IDPs undergoes slow reorientations at time scales comparable to folded proteins. The slow motions are not perturbed by mutations in α-synuclein, which are related to genetic forms of Parkinson's disease, and do not depend on secondary and tertiary structural propensities. Ensemble-based hydrodynamic calculations suggest that the time scale of the underlying correlated motion is largely determined by hydrodynamic coupling between locally rigid segments. Our study indicates that long-range correlated dynamics are an intrinsic property of IDPs and offers a general physical mechanism of correlated motions in highly flexible biomolecular systems.
Collapse
Affiliation(s)
- Giacomo Parigi
- Department of Chemistry "Ugo Schiff" and CERM, University of Florence , via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mantsyzov AB, Maltsev AS, Ying J, Shen Y, Hummer G, Bax A. A maximum entropy approach to the study of residue-specific backbone angle distributions in α-synuclein, an intrinsically disordered protein. Protein Sci 2014; 23:1275-90. [PMID: 24976112 DOI: 10.1002/pro.2511] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/16/2014] [Indexed: 01/16/2023]
Abstract
α-Synuclein is an intrinsically disordered protein of 140 residues that switches to an α-helical conformation upon binding phospholipid membranes. We characterize its residue-specific backbone structure in free solution with a novel maximum entropy procedure that integrates an extensive set of NMR data. These data include intraresidue and sequential H(N) − H(α) and H(N) − H(N) NOEs, values for (3) JHNHα, (1) JHαCα, (2) JCαN, and (1) JCαN, as well as chemical shifts of (15)N, (13)C(α), and (13)C' nuclei, which are sensitive to backbone torsion angles. Distributions of these torsion angles were identified that yield best agreement to the experimental data, while using an entropy term to minimize the deviation from statistical distributions seen in a large protein coil library. Results indicate that although at the individual residue level considerable deviations from the coil library distribution are seen, on average the fitted distributions agree fairly well with this library, yielding a moderate population (20-30%) of the PPII region and a somewhat higher population of the potentially aggregation-prone β region (20-40%) than seen in the database. A generally lower population of the αR region (10-20%) is found. Analysis of (1)H − (1)H NOE data required consideration of the considerable backbone diffusion anisotropy of a disordered protein.
Collapse
Affiliation(s)
- Alexey B Mantsyzov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | | | | | | | | | | |
Collapse
|
12
|
Reddy JG, Hosur RV. A reduced dimensionality NMR pulse sequence and an efficient protocol for unambiguous assignment in intrinsically disordered proteins. JOURNAL OF BIOMOLECULAR NMR 2014; 59:199-210. [PMID: 24854885 DOI: 10.1007/s10858-014-9839-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/08/2014] [Indexed: 05/21/2023]
Abstract
Resonance assignment in intrinsically disordered proteins poses a great challenge because of poor chemical shift dispersion in most of the nuclei that are commonly monitored. Reduced dimensionality (RD) experiments where more than one nuclei are co-evolved simultaneously along one of the time axes of a multi-dimensional NMR experiment help to resolve this problem partially, and one can conceive of different combinations of nuclei for co-evolution depending upon the magnetization transfer pathways and the desired information content in the spectrum. Here, we present a RD experiment, (4,3)D-hNCOCAnH, which uses a combination of CO and CA chemical shifts along one of the axes of the 3-dimensional spectrum, to improve spectral dispersion on one hand, and provide information on four backbone atoms of every residue-HN, N, CA and CO chemical shifts-from a single experiment, on the other. The experiment provides multiple unidirectional sequential (i → i - 1) amide (1)H correlations along different planes of the spectrum enabling easy assignment of most nuclei along the protein backbone. Occasional ambiguities that may arise due to degeneracy of amide proton chemical shifts are proposed to be resolved using the HNN experiment described previously (Panchal et al. in J Biomol NMR 20:135-147, 2001). Applications of the experiment and the assignment protocol have been demonstrated using intrinsically disordered α-synuclein (140 aa) protein.
Collapse
Affiliation(s)
- Jithender G Reddy
- Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), 1, Homi Bhabha Road, Colaba, 400005, Mumbai, India
| | | |
Collapse
|