1
|
Kairis A, Neves BD, Couturier J, Remacle C, Rouhier N. Iron‑sulfur cluster synthesis in plastids by the SUF system: A mechanistic and structural perspective. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119797. [PMID: 39033932 DOI: 10.1016/j.bbamcr.2024.119797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
About 50 proteins expressed in plastids of photosynthetic eukaryotes ligate iron‑sulfur (Fe-S) clusters and ensure vital functions in photosynthesis, sulfur and nitrogen assimilation, but also in the synthesis of pigments, vitamins and hormones. The synthesis of these Fe-S clusters, which are co- or post-translationally incorporated into these proteins, relies on several proteins belonging to the so-called sulfur mobilization (SUF) machinery. An Fe-S cluster is first de novo synthesized on a scaffold protein complex before additional late-acting maturation factors act in the specific transfer, possible conversion and insertion of this cluster into target recipient proteins. In this review, we will summarize what is known about the molecular mechanisms responsible for both the synthesis and transfer steps, focusing in particular on the structural aspects that allow the formation of the required protein complexes.
Collapse
Affiliation(s)
- Antoine Kairis
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium
| | | | - Jérémy Couturier
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; Institut Universitaire de France, F-75000 Paris, France
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium
| | | |
Collapse
|
2
|
Song X, Yang X, Ying Z, Zhang H, Liu J, Liu Q. Identification and Function of Apicoplast Glutaredoxins in Neospora caninum. Int J Mol Sci 2021; 22:ijms222111946. [PMID: 34769376 PMCID: PMC8584781 DOI: 10.3390/ijms222111946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 01/09/2023] Open
Abstract
Glutaredoxins (GRXs), important components of the intracellular thiol redox system, are involved in multiple cellular processes. In a previous study, we identified five GRXs in the apicomplexan parasite, Neospora caninum. In the present study, we confirmed that the GRXs S14 and C5 are located in the apicoplast, which suggests unique functions for these proteins. Although single-gene deficiency did not affect the growth of parasites, a double knockout (Δgrx S14Δgrx C5) significantly reduced their reproductive capacity. However, there were no significant changes in redox indices (GSH/GSSG ratio, reactive oxygen species and hydroxyl radical levels) in double-knockout parasites, indicating that grx S14 and grx C5 are not essential for maintaining the redox balance in parasite cells. Key amino acid mutations confirmed that the Cys203 of grx S14 and Cys253/256 of grx C5 are important for parasite growth. Based on comparative proteomics, 79 proteins were significantly downregulated in double-knockout parasites, including proteins mainly involved in the electron transport chain, the tricarboxylic acid cycle and protein translation. Collectively, GRX S14 and GRX C5 coordinate the growth of parasites. However, considering their special localization, the unique functions of GRX S14 and GRX C5 need to be further studied.
Collapse
Affiliation(s)
- Xingju Song
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (X.S.); (X.Y.); (Z.Y.); (H.Z.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Xu Yang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (X.S.); (X.Y.); (Z.Y.); (H.Z.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Zhu Ying
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (X.S.); (X.Y.); (Z.Y.); (H.Z.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Heng Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (X.S.); (X.Y.); (Z.Y.); (H.Z.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (X.S.); (X.Y.); (Z.Y.); (H.Z.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (X.S.); (X.Y.); (Z.Y.); (H.Z.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
3
|
Wang L, Li Y, Jacquot JP, Rouhier N, Xia B. Characterization of poplar GrxS14 in different structural forms. Protein Cell 2014; 5:329-33. [PMID: 24639280 PMCID: PMC3996159 DOI: 10.1007/s13238-014-0042-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Lei Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
4
|
Glutathione regulates the transfer of iron-sulfur cluster from monothiol and dithiol glutaredoxins to apo ferredoxin. Protein Cell 2012; 3:714-21. [PMID: 22886498 DOI: 10.1007/s13238-012-2051-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/07/2012] [Indexed: 12/21/2022] Open
Abstract
Holo glutaredoxin (Grx) is a homo-dimer that bridges a [2Fe-2S] cluster with two glutathione (GSH) ligands. In this study, both monothiol and dithiol holo Grxs are found capable of transferring their iron-sulfur (FeS) cluster to an apo ferredoxin (Fdx) through direct interaction, regardless of FeS cluster stability in holo Grxs. The ligand GSH molecules in holo Grxs are unstable and can be exchanged with free GSH, which inhibits the FeS cluster transfer from holo Grxs to apo Fdx. This phenomenon suggests a novel role of GSH in FeS cluster trafficking.
Collapse
|