1
|
Ferreras-Gutiérrez M, Mínguez-Toral M, Ibáñez de Opakua A, Martín-Santamaría S, García-Marcos M, Medrano FJ, Blanco FJ. Integrated NMR-crystallography-computational approach for molecular recognition studies of human Gαi3 protein by a small molecule inhibitor. Int J Biol Macromol 2024; 290:138977. [PMID: 39706421 DOI: 10.1016/j.ijbiomac.2024.138977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The small molecule IGGi-11 targets Gαi subunits of heterotrimeric guanine nucleotide-binding proteins. Gα subunits are activated by G-protein-coupled receptors in response to extracellular stimuli by accelerating the exchange of GDP for GTP, but they are also activated by intracellular proteins like GIV, of which elevated levels correlate with increased cell migration and cancer metastasis. IGGi-11 disrupts the interaction of Gαi proteins with GIV and inhibits pro-invasive traits of metastatic breast cancer cells without interfering with GPCR signaling. IGGi-11 is a competitive inhibitor but binds Gαi3 with a 10-fold lower affinity than GIV. To guide the design of higher affinity inhibitors, we aimed at obtaining high-resolution structural data on the complex. To facilitate its crystallization, we have removed the most flexible residues at the chain ends of Gαi3, identified by NMR. While Gαi3 crystals grown with excess IGGi-11 did not show the bound compound, computational docking and molecular dynamics simulations identified the interactions driving the molecular recognition. This approach revealed heterogeneous binding due to the symmetry of IGGi-11 chemical structure and to the elongated shape and flexibility of the binding site. Our results suggest that chemical modifications breaking IGGi-11 symmetry might yield inhibitors with higher affinity and potential as antimetastatic drugs.
Collapse
Affiliation(s)
| | - Marina Mínguez-Toral
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | | | | | - Mikel García-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA
| | - Francisco J Medrano
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Francisco J Blanco
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia 46010, Spain; Centro de Investigación Príncipe Felipe, Unidad Asociada a IBV, Valencia 46012, Spain.
| |
Collapse
|
2
|
Hewitt N, Ma N, Arang N, Martin SA, Prakash A, DiBerto JF, Knight KM, Ghosh S, Olsen RHJ, Roth BL, Gutkind JS, Vaidehi N, Campbell SL, Dohlman HG. Catalytic site mutations confer multiple states of G protein activation. Sci Signal 2023; 16:eabq7842. [PMID: 36787384 PMCID: PMC10021883 DOI: 10.1126/scisignal.abq7842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) that function as molecular switches for cellular growth and metabolism are activated by GTP and inactivated by GTP hydrolysis. In uveal melanoma, a conserved glutamine residue critical for GTP hydrolysis in the G protein α subunit is often mutated in Gαq or Gα11 to either leucine or proline. In contrast, other glutamine mutations or mutations in other Gα subtypes are rare. To uncover the mechanism of the genetic selection and the functional role of this glutamine residue, we analyzed all possible substitutions of this residue in multiple Gα isoforms. Through cell-based measurements of activity, we showed that some mutants were further activated and inactivated by G protein-coupled receptors. Through biochemical, molecular dynamics, and nuclear magnetic resonance-based structural studies, we showed that the Gα mutants were functionally distinct and conformationally diverse, despite their shared inability to hydrolyze GTP. Thus, the catalytic glutamine residue contributes to functions beyond GTP hydrolysis, and these functions include subtype-specific, allosteric modulation of receptor-mediated subunit dissociation. We conclude that G proteins do not function as simple on-off switches. Rather, signaling emerges from an ensemble of active states, a subset of which are favored in disease and may be uniquely responsive to receptor-directed ligands.
Collapse
Affiliation(s)
- Natalie Hewitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Nadia Arang
- Department of Pharmacology, University of California San Diego, San Diego, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sarah A. Martin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey F. DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin M. Knight
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Soumadwip Ghosh
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Current address: Illumina Inc, 5200 Illumina Way, San Diego, CA 92037, USA
| | - Reid H. J. Olsen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Current address: GPCR Pharmacology, Discovery Biology, Exscientia Ai, Oxford, UK OX4 4GE
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Silvio Gutkind
- Department of Pharmacology, University of California San Diego, San Diego, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henrik G. Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Goricanec D, Hagn F. NMR backbone and methyl resonance assignments of an inhibitory G-alpha subunit in complex with GDP. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:131-137. [PMID: 30539422 DOI: 10.1007/s12104-018-9865-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
G-proteins are essential switch points at the cell membrane that control downstream signaling by their ability to adopt an inactive, GDP-bound or an active, GTP-bound state. Among other exchange factors, G-protein coupled receptors (GPCRs) induce exchange of GDP to GTP and thus promote the active state of the G-protein. The nucleotide-binding α subunit of the G-protein undergoes major conformational changes upon nucleotide binding. Thus, an NMR analysis of the two distinct nucleotide-bound states is essential for a more detailed understanding of associated structural changes. Here, we provide an NMR backbone as well as methyl group resonance assignment of an inhibitory G-alpha subunit subtype 1 (Gαi,1) in the GDP-bound form and show that, in contrast to the GTP-bound form, large parts of the protein are mobile, presumably caused by a loose arrangement of the two subdomains in Gα that tightly interact with each other only in the GTP-bound state. As the GDP-bound form represents the GPCR-binding-competent state, the presented NMR data will be essential for further studies on G-protein-GPCR interactions and dynamics in solution for receptor systems that couple to G-proteins containing an inhibitory Gα,1 subunit.
Collapse
Affiliation(s)
- David Goricanec
- Bavarian NMR Center at the Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748, Garching, Germany
- Institute of Structural Biology, Helmholtz Center Munich, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Franz Hagn
- Bavarian NMR Center at the Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Ernst-Otto-Fischer-Str. 2, 85748, Garching, Germany.
- Institute of Structural Biology, Helmholtz Center Munich, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
| |
Collapse
|
4
|
DiGiacomo V, de Opakua AI, Papakonstantinou MP, Nguyen LT, Merino N, Blanco-Canosa JB, Blanco FJ, Garcia-Marcos M. The Gαi-GIV binding interface is a druggable protein-protein interaction. Sci Rep 2017; 7:8575. [PMID: 28819150 PMCID: PMC5561080 DOI: 10.1038/s41598-017-08829-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/12/2017] [Indexed: 01/26/2023] Open
Abstract
Heterotrimeric G proteins are usually activated by the guanine-nucleotide exchange factor (GEF) activity of GPCRs. However, some non-receptor proteins are also GEFs. GIV (a.k.a Girdin) was the first non-receptor protein for which the GEF activity was ascribed to a well-defined protein sequence that directly binds Gαi. GIV expression promotes metastasis and disruption of its binding to Gαi blunts the pro-metastatic behavior of cancer cells. Although this suggests that inhibition of the Gαi-GIV interaction is a promising therapeutic strategy, protein-protein interactions (PPIs) are considered poorly "druggable" targets requiring case-by-case validation. Here, we set out to investigate whether Gαi-GIV is a druggable PPI. We tested a collection of >1,000 compounds on the Gαi-GIV PPI by in silico ligand screening and separately by a chemical high-throughput screening (HTS) assay. Two hits, ATA and NF023, obtained in both screens were confirmed in secondary HTS and low-throughput assays. The binding site of NF023, identified by NMR spectroscopy and biochemical assays, overlaps with the Gαi-GIV interface. Importantly, NF023 did not disrupt Gαi-Gβγ binding, indicating its specificity toward Gαi-GIV. This work establishes the Gαi-GIV PPI as a druggable target and sets the conceptual and technical framework for the discovery of novel inhibitors of this PPI.
Collapse
Affiliation(s)
- Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, USA
| | | | | | - Lien T Nguyen
- Department of Biochemistry, Boston University School of Medicine, Boston, USA
| | | | - Juan B Blanco-Canosa
- Department of Chemistry and Molecular Pharmacology, IRB Barcelona, Barcelona, Spain
| | - Francisco J Blanco
- CIC-BioGune, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, USA.
| |
Collapse
|
5
|
de Opakua AI, Parag-Sharma K, DiGiacomo V, Merino N, Leyme A, Marivin A, Villate M, Nguyen LT, de la Cruz-Morcillo MA, Blanco-Canosa JB, Ramachandran S, Baillie GS, Cerione RA, Blanco FJ, Garcia-Marcos M. Molecular mechanism of Gαi activation by non-GPCR proteins with a Gα-Binding and Activating motif. Nat Commun 2017; 8:15163. [PMID: 28516903 PMCID: PMC5454376 DOI: 10.1038/ncomms15163] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/06/2017] [Indexed: 01/03/2023] Open
Abstract
Heterotrimeric G proteins are quintessential signalling switches activated by nucleotide exchange on Gα. Although activation is predominantly carried out by G-protein-coupled receptors (GPCRs), non-receptor guanine-nucleotide exchange factors (GEFs) have emerged as critical signalling molecules and therapeutic targets. Here we characterize the molecular mechanism of G-protein activation by a family of non-receptor GEFs containing a Gα-binding and -activating (GBA) motif. We combine NMR spectroscopy, computational modelling and biochemistry to map changes in Gα caused by binding of GBA proteins with residue-level resolution. We find that the GBA motif binds to the SwitchII/α3 cleft of Gα and induces changes in the G-1/P-loop and G-2 boxes (involved in phosphate binding), but not in the G-4/G-5 boxes (guanine binding). Our findings reveal that G-protein-binding and activation mechanisms are fundamentally different between GBA proteins and GPCRs, and that GEF-mediated perturbation of nucleotide phosphate binding is sufficient for Gα activation. Nonreceptor guanine-nucleotide exchange factors (GEFs) are emerging as important regulators of heterotrimeric G proteins. Here, the authors present structural and mechanistic insights into how a class of nonreceptor GEFs containing the Ga-Binding and Activating motif interact and modulate G proteins.
Collapse
Affiliation(s)
| | - Kshitij Parag-Sharma
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | - Anthony Leyme
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | - Lien T Nguyen
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | - Juan B Blanco-Canosa
- Department of Chemistry and Molecular Pharmacology, IRB Barcelona, 08028 Barcelona, Spain
| | - Sekar Ramachandran
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, Department of Molecular Pharmacology, University of Glasgow, Glasgow G12 8QQ, UK
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | - Francisco J Blanco
- CIC bioGUNE, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48160 Bilbao, Spain
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
6
|
Toyama Y, Kano H, Mase Y, Yokogawa M, Osawa M, Shimada I. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses. Nat Commun 2017; 8:14523. [PMID: 28223697 PMCID: PMC5322562 DOI: 10.1038/ncomms14523] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/10/2017] [Indexed: 11/30/2022] Open
Abstract
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation. Heterotrimeric guanine-nucleotide-binding proteins (G proteins) act as molecular switches. Here the authors use NMR relaxation analyses, which reveal the dynamics of G protein alpha subunit binding to GDP on a microsecond timescale.
Collapse
Affiliation(s)
- Yuki Toyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Japan Biological Informatics Consortium (JBiC), Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Hanaho Kano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoko Mase
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|