1
|
El-Kamand S, Du Plessis MD, Lawson T, Cubeddu L, Gamsjaeger R. Expression, Purification, and Solution-State NMR Analysis of the Two Human Single-Stranded DNA-Binding Proteins hSSB1 (NABP2/OBFC2B) and hSSB2 (NAPB1/OBFC2A). Methods Mol Biol 2021; 2281:229-240. [PMID: 33847962 DOI: 10.1007/978-1-0716-1290-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-stranded DNA-binding proteins (SSBs) are essential to all living organisms as protectors and guardians of the genome. Apart from the well-characterized RPA, humans have also evolved two further SSBs, termed hSSB1 and hSSB2. Over the last few years, we have used NMR spectroscopy to determine the molecular and structural details of both hSSBs and their interactions with DNA and RNA. Here we provide a detailed overview of how to express and purify recombinant versions of these important human proteins for the purpose of detailed structural analysis by high-resolution solution-state NMR.
Collapse
Affiliation(s)
- Serene El-Kamand
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | | | - Teegan Lawson
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Liza Cubeddu
- School of Science, Western Sydney University, Penrith, NSW, Australia.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Roland Gamsjaeger
- School of Science, Western Sydney University, Penrith, NSW, Australia.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Lawson T, El-Kamand S, Boucher D, Duong DC, Kariawasam R, Bonvin AMJJ, Richard DJ, Gamsjaeger R, Cubeddu L. The structural details of the interaction of single-stranded DNA binding protein hSSB2 (NABP1/OBFC2A) with UV-damaged DNA. Proteins 2019; 88:319-326. [PMID: 31443132 DOI: 10.1002/prot.25806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022]
Abstract
Single-stranded DNA-binding proteins (SSBs) are required for all known DNA metabolic events such as DNA replication, recombination and repair. While a wealth of structural and functional data is available on the essential human SSB, hSSB1 (NABP2/OBFC2B), the close homolog hSSB2 (NABP1/OBFC2A) remains relatively uncharacterized. Both SSBs possess a well-structured OB (oligonucleotide/oligosaccharide-binding) domain that is able to recognize single-stranded DNA (ssDNA) followed by a flexible carboxyl-tail implicated in the interaction with other proteins. Despite the high sequence similarity of the OB domain, several recent studies have revealed distinct functional differences between hSSB1 and hSSB2. In this study, we show that hSSB2 is able to recognize cyclobutane pyrimidine dimers (CPD) that form in cellular DNA as a consequence of UV damage. Using a combination of biolayer interferometry and NMR, we determine the molecular details of the binding of the OB domain of hSSB2 to CPD-containing ssDNA, confirming the role of four key aromatic residues in hSSB2 (W59, Y78, W82, and Y89) that are also conserved in hSSB1. Our structural data thus demonstrate that ssDNA recognition by the OB fold of hSSB2 is highly similar to hSSB1, indicating that one SSB may be able to replace the other in any initial ssDNA binding event. However, any subsequent recruitment of other repair proteins most likely depends on the divergent carboxyl-tail and as such is likely to be different between hSSB1 and hSSB2.
Collapse
Affiliation(s)
- Teegan Lawson
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Serene El-Kamand
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Didier Boucher
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Duc Cong Duong
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Ruvini Kariawasam
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Derek J Richard
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Roland Gamsjaeger
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Liza Cubeddu
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia.,School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Croft LV, Bolderson E, Adams MN, El-Kamand S, Kariawasam R, Cubeddu L, Gamsjaeger R, Richard DJ. Human single-stranded DNA binding protein 1 (hSSB1, OBFC2B), a critical component of the DNA damage response. Semin Cell Dev Biol 2019; 86:121-128. [DOI: 10.1016/j.semcdb.2018.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022]
|
4
|
Kariawasam R, Knight M, Gamsjaeger R, Cubeddu L. Backbone 1H, 13C and 15N resonance assignments of the OB domain of the single stranded DNA-binding protein hSSB2 (NABP1/OBFC2A) and chemical shift mapping of the DNA-binding interface. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:107-111. [PMID: 29063999 DOI: 10.1007/s12104-017-9789-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Single stranded DNA-binding proteins (SSBs) are essential for the maintenance of genome integrity and are required in in all known cellular organisms. Over the last 10 years, the role of two new human SSBs, hSSB1 (NABP2/OBFC2B) and hSSB2 (NABP1/OBFC2A), has been described and characterised in various important DNA repair processes. Both these proteins are made up of a conserved oligonucleotide-binding (OB) fold that is responsible for ssDNA recognition as well a unique flexible carboxy-terminal extension involved in protein-protein interactions. Due to their similar domain organisation, hSSB1 and hSSB2 have been found to display some overlapping functions. However, several studies have also revealed cell- and tissue-specific roles for these two proteins, most likely due to small but significant differences in the protein sequence of the OB domains. While the molecular details of ssDNA binding by hSSB1 has been studied extensively, comparatively little is known about hSSB2. In this study, we use NMR solution-state backbone resonance assignments of the OB domain of hSSB2 to map the ssDNA interaction interface. Our data reveal that ssDNA binding by hSSB2 is driven by four key aromatic residues in analogy to hSSB1, however, some significant differences in the chemical shift perturbations are observed, reflecting differences in ssDNA recognition. Future studies will aim at determining the structural basis of these differences and thus help to gain a more comprehensive understanding of the functional divergences that these novel hSSBs display in the context of genome maintenance.
Collapse
Affiliation(s)
- Ruvini Kariawasam
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Maddison Knight
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Roland Gamsjaeger
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Liza Cubeddu
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
5
|
Touma C, Adams MN, Ashton NW, Mizzi M, El-Kamand S, Richard DJ, Cubeddu L, Gamsjaeger R. A data-driven structural model of hSSB1 (NABP2/OBFC2B) self-oligomerization. Nucleic Acids Res 2017; 45:8609-8620. [PMID: 28609781 PMCID: PMC5737504 DOI: 10.1093/nar/gkx526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/05/2017] [Indexed: 12/19/2022] Open
Abstract
The maintenance of genome stability depends on the ability of the cell to repair DNA efficiently. Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. While the role of human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) in the repair of double-stranded breaks has been well established, we have recently shown that it is also essential for the base excision repair (BER) pathway following oxidative DNA damage. However, unlike in DSB repair, the formation of stable hSSB1 oligomers under oxidizing conditions is an important prerequisite for its proper function in BER. In this study, we have used solution-state NMR in combination with biophysical and functional experiments to obtain a structural model of hSSB1 self-oligomerization. We reveal that hSSB1 forms a tetramer that is structurally similar to the SSB from Escherichia coli and is stabilized by two cysteines (C81 and C99) as well as a subset of charged and hydrophobic residues. Our structural and functional data also show that hSSB1 oligomerization does not preclude its function in DSB repair, where it can interact with Ints3, a component of the SOSS1 complex, further establishing the versatility that hSSB1 displays in maintaining genome integrity.
Collapse
Affiliation(s)
- Christine Touma
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Mark N Adams
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Nicholas W Ashton
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Michael Mizzi
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Serene El-Kamand
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Derek J Richard
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Liza Cubeddu
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Roland Gamsjaeger
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia.,School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Touma C, Kariawasam R, Gimenez AX, Bernardo RE, Ashton NW, Adams MN, Paquet N, Croll TI, O'Byrne KJ, Richard DJ, Cubeddu L, Gamsjaeger R. A structural analysis of DNA binding by hSSB1 (NABP2/OBFC2B) in solution. Nucleic Acids Res 2016; 44:7963-73. [PMID: 27387285 PMCID: PMC5027503 DOI: 10.1093/nar/gkw617] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/28/2016] [Indexed: 02/07/2023] Open
Abstract
Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. Human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) contains a single oligosaccharide/oligonucleotide binding (OB) domain followed by a charged C-terminus and is structurally homologous to the SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus. Recent work has revealed that hSSB1 is critical to homologous recombination and numerous other important biological processes such as the regulation of telomeres, the maintenance of DNA replication forks and oxidative damage repair. Since the ability of hSSB1 to directly interact with single-stranded DNA (ssDNA) is paramount for all of these processes, understanding the molecular details of ssDNA recognition is essential. In this study, we have used solution-state nuclear magnetic resonance in combination with biophysical and functional experiments to structurally analyse ssDNA binding by hSSB1. We reveal that ssDNA recognition in solution is modulated by base-stacking of four key aromatic residues within the OB domain. This DNA binding mode differs significantly from the recently determined crystal structure of the SOSS1 complex containing hSSB1 and ssDNA. Our findings elucidate the detailed molecular mechanism in solution of ssDNA binding by hSSB1, a major player in the maintenance of genomic stability.
Collapse
Affiliation(s)
- Christine Touma
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ruvini Kariawasam
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Adrian X Gimenez
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ray E Bernardo
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia
| | - Nicholas W Ashton
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Mark N Adams
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Nicolas Paquet
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Tristan I Croll
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Kenneth J O'Byrne
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Derek J Richard
- School of Biomedical Research, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD 4102, Australia
| | - Liza Cubeddu
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia School of Molecular Biosciences, University of Sydney, NSW 2006, Australia
| | - Roland Gamsjaeger
- School of Science and Health, Western Sydney University, Penrith, NSW 2751, Australia School of Molecular Biosciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|