1
|
Duchardt-Ferner E, Juen M, Bourgeois B, Madl T, Kreutz C, Ohlenschläger O, Wöhnert J. Structure of an RNA aptamer in complex with the fluorophore tetramethylrhodamine. Nucleic Acids Res 2020; 48:949-961. [PMID: 31754719 PMCID: PMC6954400 DOI: 10.1093/nar/gkz1113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022] Open
Abstract
RNA aptamers-artificially created RNAs with high affinity and selectivity for their target ligand generated from random sequence pools-are versatile tools in the fields of biotechnology and medicine. On a more fundamental level, they also further our general understanding of RNA-ligand interactions e. g. in regard to the relationship between structural complexity and ligand affinity and specificity, RNA structure and RNA folding. Detailed structural knowledge on a wide range of aptamer-ligand complexes is required to further our understanding of RNA-ligand interactions. Here, we present the atomic resolution structure of an RNA-aptamer binding to the fluorescent xanthene dye tetramethylrhodamine. The high resolution structure, solved by NMR-spectroscopy in solution, reveals binding features both common and different from the binding mode of other aptamers with affinity for ligands carrying planar aromatic ring systems such as the malachite green aptamer which binds to the tetramethylrhodamine related dye malachite green or the flavin mononucleotide aptamer.
Collapse
Affiliation(s)
- Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M., Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt/M., Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Michael Juen
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Institute of Molecular Biology & Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Institute of Molecular Biology & Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Centre for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Oliver Ohlenschläger
- Leibniz-Institute on Aging - Fritz-Lipmann-Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe University, Frankfurt/M., Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt/M., Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| |
Collapse
|
2
|
Chemical Modifications of Nucleic Acid Aptamers for Therapeutic Purposes. Int J Mol Sci 2017; 18:ijms18081683. [PMID: 28767098 PMCID: PMC5578073 DOI: 10.3390/ijms18081683] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 01/16/2023] Open
Abstract
Nucleic acid aptamers have minimal immunogenicity, high chemical synthesis production, low cost and high chemical stability when compared with antibodies. However, the susceptibility to nuclease degradation, rapid excretion through renal filtration and insufficient binding affinity hindered their development as drug candidates for therapeutic applications. In this review, we will discuss methods to conquer these challenges and highlight recent developments of chemical modifications and technological advances that may enable early aptamers to be translated into clinical therapeutics.
Collapse
|