1
|
Bril’kov MS, Dobrovolska O, Ødegård-Fougner Ø, Turcu DC, Strømland Ø, Underhaug J, Aasland R, Halskau Ø. Binding Specificity of ASHH2 CW Domain Toward H3K4me1 Ligand Is Coupled to Its Structural Stability Through Its α1-Helix. Front Mol Biosci 2022; 9:763750. [PMID: 35495628 PMCID: PMC9043364 DOI: 10.3389/fmolb.2022.763750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/25/2022] [Indexed: 11/14/2022] Open
Abstract
The CW domain binds to histone tail modifications found in different protein families involved in epigenetic regulation and chromatin remodeling. CW domains recognize the methylation state of the fourth lysine on histone 3 and could, therefore, be viewed as a reader of epigenetic information. The specificity toward different methylation states such as me1, me2, or me3 depends on the particular CW subtype. For example, the CW domain of ASHH2 methyltransferase binds preferentially to H3K4me1, and MORC3 binds to both H3K4me2 and me3 modifications, while ZCWPW1 is more specific to H3K4me3. The structural basis for these preferential bindings is not well understood, and recent research suggests that a more complete picture will emerge if dynamical and energetic assessments are included in the analysis of interactions. This study uses fold assessment by NMR in combination with mutagenesis, ITC affinity measurements, and thermal denaturation studies to investigate possible couplings between ASHH2 CW selectivity toward H3K4me1 and the stabilization of the domain and loops implicated in binding. The key elements of the binding site—the two tryptophans and the α1-helix form and maintain the binding pocket— were perturbed by mutagenesis and investigated. Results show that the α1-helix maintains the overall stability of the fold via the I915 and L919 residues and that the correct binding consolidates the loops designated as η1 and η3, as well as the C-terminal. This consolidation is incomplete for H3K4me3 binding to CW, which experiences a decrease in overall thermal stability on binding. Loop mutations not directly involved in the binding site, nonetheless, affect the equilibrium positions of the key residues.
Collapse
Affiliation(s)
- Maxim S. Bril’kov
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Pharmacy, University of Tromsø, Tromsø, Norway
| | - Olena Dobrovolska
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Øyvind Ødegård-Fougner
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Diana C. Turcu
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Jarl Underhaug
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - Rein Aasland
- Department of Biosciences, University of Oslo, Oslo, Norway
- *Correspondence: Rein Aasland, ; Øyvind Halskau,
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- *Correspondence: Rein Aasland, ; Øyvind Halskau,
| |
Collapse
|
2
|
Dobrovolska O, Brilkov M, Madeleine N, Ødegård-Fougner Ø, Strømland Ø, Martin SR, De Marco V, Christodoulou E, Teigen K, Isaksson J, Underhaug J, Reuter N, Aalen RB, Aasland R, Halskau Ø. The Arabidopsis (ASHH2) CW domain binds monomethylated K4 of the histone H3 tail through conformational selection. FEBS J 2020; 287:4458-4480. [PMID: 32083791 DOI: 10.1111/febs.15256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/17/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
Abstract
Chromatin post-translational modifications are thought to be important for epigenetic effects on gene expression. Methylation of histone N-terminal tail lysine residues constitutes one of many such modifications, executed by families of histone lysine methyltransferase (HKMTase). One such protein is ASHH2 from the flowering plant Arabidopsis thaliana, equipped with the interaction domain, CW, and the HKMTase domain, SET. The CW domain of ASHH2 is a selective binder of monomethylation at lysine 4 on histone H3 (H3K4me1) and likely helps the enzyme dock correctly onto chromatin sites. The study of CW and related interaction domains has so far been emphasizing lock-key models, missing important aspects of histone-tail CW interactions. We here present an analysis of the ASHH2 CW-H3K4me1 complex using NMR and molecular dynamics, as well as mutation and affinity studies of flexible coils. β-augmentation and rearrangement of coils coincide with changes in the flexibility of the complex, in particular the η1, η3 and C-terminal coils, but also in the β1 and β2 strands and the C-terminal part of the ligand. Furthermore, we show that mutating residues with outlier dynamic behaviour affect the complex binding affinity despite these not being in direct contact with the ligand. Overall, the binding process is consistent with conformational selection. We propose that this binding mechanism presents an advantage when searching for the correct post-translational modification state among the highly modified and flexible histone tails, and also that the binding shifts the catalytic SET domain towards the nucleosome. DATABASES: Structural data are available in the PDB database under the accession code 6QXZ. Resonance assignments for CW42 in its apo- and holo-forms are available in the BMRB database under the accession code 27251.
Collapse
Affiliation(s)
- Olena Dobrovolska
- Department of Biological Sciences, University of Bergen, Norway, Bergen
| | - Maxim Brilkov
- Department of Biological Sciences, University of Bergen, Norway, Bergen
| | - Noelly Madeleine
- Department of Biological Sciences, University of Bergen, Norway, Bergen.,Department of Biomedicine, University of Bergen, Norway, Bergen
| | - Øyvind Ødegård-Fougner
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Stephen R Martin
- Structural Biology Science Technology Platform, Francis Crick Institute, London, UK
| | | | | | - Knut Teigen
- Department of Biomedicine, University of Bergen, Norway, Bergen
| | - Johan Isaksson
- Department of Chemistry, The Arctic University of Tromsø, Norway
| | - Jarl Underhaug
- Department of Chemistry, University of Bergen, Norway, Bergen
| | - Nathalie Reuter
- Department of Chemistry, University of Bergen, Norway, Bergen
| | | | - Rein Aasland
- Department of Biosciences, University of Oslo, Norway, Oslo
| | - Øyvind Halskau
- Department of Biological Sciences, University of Bergen, Norway, Bergen
| |
Collapse
|