1
|
Lambert KA, Clements CM, Mukherjee N, Pacheco TR, Shellman SX, Henen MA, Vögeli B, Goldstein NB, Birlea S, Hintzsche J, Caryotakis G, Tan AC, Zhao R, Norris DA, Robinson WA, Wang Y, VanTreeck JG, Shellman YG. SASH1 S519N Variant Links Skin Hyperpigmentation and Premature Hair Graying to Dysfunction of Melanocyte Lineage. J Invest Dermatol 2025; 145:144-154.e3. [PMID: 38848986 PMCID: PMC11621233 DOI: 10.1016/j.jid.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 06/09/2024]
Abstract
A better understanding of human melanocyte (MC) and MC stem cell biology is essential for treating MC-related diseases. This study employed an inherited pigmentation disorder carrying the SASH1S519N variant in a Hispanic family to investigate SASH1 function in the MC lineage and the underlying mechanism for this disorder. We used a multidisciplinary approach, including clinical examinations, human cell assays, yeast 2-hybrid screening, and biochemical techniques. Results linked early hair graying to the SASH1S519N variant, a previously unrecognized clinical phenotype in hyperpigmentation disorders. In vitro, we identified SASH1 as a regulator in MC stem cell maintenance and discovered that TNKS2 is crucial for SASH1's role. In addition, the S519N variant is located in one of multiple tankyrase-binding motifs and alters the binding kinetics and affinity of the interaction. In summary, this disorder links both gain and loss of pigmentation in the same individual, hinting to accelerated aging in human MC stem cells. The findings offer insights into the roles of SASH1 and TNKS2 in MC stem cell maintenance and the molecular mechanisms of pigmentation disorders. We propose that a comprehensive clinical evaluation of patients with MC-related disorders should include an assessment and history of hair pigmentation loss.
Collapse
Affiliation(s)
- Karoline A Lambert
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Christopher M Clements
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Nabanita Mukherjee
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Theresa R Pacheco
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Samantha X Shellman
- Department of Computer Science, University of Colorado Boulder, Boulder, Colorado, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Nathaniel B Goldstein
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Stanca Birlea
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA; Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Griffin Caryotakis
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA; Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Aik-Choon Tan
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA; Department of Biomedical Informatics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - David A Norris
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - William A Robinson
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA
| | - Yizhou Wang
- Department of Chemistry, College of Arts and Sciences, Emory University, Atlanta, Georgia, USA
| | - Jillian G VanTreeck
- College of Biological Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA
| | - Yiqun G Shellman
- Department of Dermatology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, Colorado, USA; Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
2
|
Lambert KA, Clements CM, Mukherjee N, Pacheco TR, Shellman SX, Henen MA, Vögeli B, Goldstein NB, Birlea S, Hintzsche J, Tan AC, Zhao R, Norris DA, Robinson WA, Wang Y, VanTreeck JG, Shellman YG. SASH1 interacts with TNKS2 and promotes human melanocyte stem cell maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559624. [PMID: 37808724 PMCID: PMC10557680 DOI: 10.1101/2023.09.26.559624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Both aging spots (hyperpigmentation) and hair graying (lack of pigmentation) are associated with aging, two seemingly opposite pigmentation phenotypes. It is not clear how they are mechanistically connected. This study investigated the underlying mechanism in a family with an inherited pigmentation disorder. Clinical examinations identified accelerated hair graying and skin dyspigmentation (intermixed hyper and hypopigmentation) in the family members carrying the SASH1 S519N variant. Cell assays indicated that SASH1 promoted stem-like characteristics in human melanocytes, and SASH1 S519N was defective in this function. Multiple assays showed that SASH1 binds to tankyrase 2 (TNKS2), which is required for SASH1's promotion of stem-like function. Further, the SASH1 S519N variant is in a bona fide Tankyrase-binding motif, and SASH1 S519N alters the binding kinetics and affinity. Results here indicate SASH1 as a novel protein regulating the appropriate balance between melanocyte stem cells (McSC) and mature melanocytes (MCs), with S519N variant causing defects. We propose that dysfunction of McSC maintenance connects multiple aging-associated pigmentation phenotypes in the general population.
Collapse
|
3
|
Goh S, Kolakowski J, Holder A, Pfuhl M, Ngugi D, Ballingall K, Tombacz K, Werling D. Development of a Potential Yeast-Based Vaccine Platform for Theileria parva Infection in Cattle. Front Immunol 2021; 12:674484. [PMID: 34305904 PMCID: PMC8297500 DOI: 10.3389/fimmu.2021.674484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023] Open
Abstract
East Coast Fever (ECF), caused by the tick-borne apicomplexan parasite Theileria parva, remains one of the most important livestock diseases in sub-Saharan Africa with more than 1 million cattle dying from infection every year. Disease prevention relies on the so-called "Infection and Treatment Method" (ITM), which is costly, complex, laborious, difficult to standardise on a commercial scale and results in a parasite strain-specific, MHC class I-restricted cytotoxic T cell response. We therefore attempted to develop a safe, affordable, stable, orally applicable and potent subunit vaccine for ECF using five different T. parva schizont antigens (Tp1, Tp2, Tp9, Tp10 and N36) and Saccharomyces cerevisiae as an expression platform. Full-length Tp2 and Tp9 as well as fragments of Tp1 were successfully expressed on the surface of S. cerevisiae. In vitro analyses highlighted that recombinant yeast expressing Tp2 can elicit IFNγ responses using PBMCs from ITM-immunized calves, while Tp2 and Tp9 induced IFNγ responses from enriched bovine CD8+ T cells. A subsequent in vivo study showed that oral administration of heat-inactivated, freeze-dried yeast stably expressing Tp2 increased total murine serum IgG over time, but more importantly, induced Tp2-specific serum IgG antibodies in individual mice compared to the control group. While these results will require subsequent experiments to verify induction of protection in neonatal calves, our data indicates that oral application of yeast expressing Theileria antigens could provide an affordable and easy vaccination platform for sub-Saharan Africa. Evaluation of antigen-specific cellular immune responses, especially cytotoxic CD8+ T cell immunity in cattle will further contribute to the development of a yeast-based vaccine for ECF.
Collapse
Affiliation(s)
- Shan Goh
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Jeannine Kolakowski
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Angela Holder
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Mark Pfuhl
- Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| | - Daniel Ngugi
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | | | - Kata Tombacz
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
4
|
de Araújo RSA, da Silva-Junior EF, de Aquino TM, Scotti MT, Ishiki HM, Scotti L, Mendonça-Junior FJB. Computer-Aided Drug Design Applied to Secondary Metabolites as Anticancer Agents. Curr Top Med Chem 2021; 20:1677-1703. [PMID: 32515312 DOI: 10.2174/1568026620666200607191838] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/06/2019] [Accepted: 01/05/2020] [Indexed: 12/11/2022]
Abstract
Computer-Aided Drug Design (CADD) techniques have garnered a great deal of attention in academia and industry because of their great versatility, low costs, possibilities of cost reduction in in vitro screening and in the development of synthetic steps; these techniques are compared with highthroughput screening, in particular for candidate drugs. The secondary metabolism of plants and other organisms provide substantial amounts of new chemical structures, many of which have numerous biological and pharmacological properties for virtually every existing disease, including cancer. In oncology, compounds such as vimblastine, vincristine, taxol, podophyllotoxin, captothecin and cytarabine are examples of how important natural products enhance the cancer-fighting therapeutic arsenal. In this context, this review presents an update of Ligand-Based Drug Design and Structure-Based Drug Design techniques applied to flavonoids, alkaloids and coumarins in the search of new compounds or fragments that can be used in oncology. A systematical search using various databases was performed. The search was limited to articles published in the last 10 years. The great diversity of chemical structures (coumarin, flavonoids and alkaloids) with cancer properties, associated with infinite synthetic possibilities for obtaining analogous compounds, creates a huge chemical environment with potential to be explored, and creates a major difficulty, for screening studies to select compounds with more promising activity for a selected target. CADD techniques appear to be the least expensive and most efficient alternatives to perform virtual screening studies, aiming to selected compounds with better activity profiles and better "drugability".
Collapse
Affiliation(s)
| | | | - Thiago Mendonça de Aquino
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Hamilton M Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente- SP, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | | |
Collapse
|
5
|
Solution NMR Structure of Titin N2A Region Ig Domain I83 and Its Interaction with Metal Ions. J Mol Biol 2021; 433:166977. [PMID: 33811919 DOI: 10.1016/j.jmb.2021.166977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
Titin, the largest single chain protein known so far, has long been known to play a critical role in passive muscle function but recent studies have highlighted titin's role in active muscle function. One of the key elements in this role is the Ca2+-dependent interaction between titin's N2A region and the thin filament. An important element in this interaction is I83, the terminal immunoglobulin domain in the N2A region. There is limited structural information about this domain, but experimental evidence suggests that it plays a critical role in the N2A-actin binding interaction. We now report the solution NMR structure of I83 and characterize its dynamics and metal binding properties in detail. Its structure shows interesting relationships to other I-band Ig domains. Metal binding and dynamics data point towards the way the domain is evolutionarily optimized to interact with neighbouring domains. We also identify a calcium binding site on the N-terminal side of I83, which is expected to impact the interdomain interaction with the I82 domain. Together these results provide a first step towards a better understanding of the physiological effects associated with deletion of most of the I83 domain, as occurs in the mdm mouse model, as well as for future investigations of the N2A region.
Collapse
|
6
|
Pollock K, Liu M, Zaleska M, Meniconi M, Pfuhl M, Collins I, Guettler S. Fragment-based screening identifies molecules targeting the substrate-binding ankyrin repeat domains of tankyrase. Sci Rep 2019; 9:19130. [PMID: 31836723 PMCID: PMC6911004 DOI: 10.1038/s41598-019-55240-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
The PARP enzyme and scaffolding protein tankyrase (TNKS, TNKS2) uses its ankyrin repeat clusters (ARCs) to bind a wide range of proteins and thereby controls diverse cellular functions. A number of these are implicated in cancer-relevant processes, including Wnt/β-catenin signalling, Hippo signalling and telomere maintenance. The ARCs recognise a conserved tankyrase-binding peptide motif (TBM). All currently available tankyrase inhibitors target the catalytic domain and inhibit tankyrase's poly(ADP-ribosyl)ation function. However, there is emerging evidence that catalysis-independent "scaffolding" mechanisms contribute to tankyrase function. Here we report a fragment-based screening programme against tankyrase ARC domains, using a combination of biophysical assays, including differential scanning fluorimetry (DSF) and nuclear magnetic resonance (NMR) spectroscopy. We identify fragment molecules that will serve as starting points for the development of tankyrase substrate binding antagonists. Such compounds will enable probing the scaffolding functions of tankyrase, and may, in the future, provide potential alternative therapeutic approaches to inhibiting tankyrase activity in cancer and other conditions.
Collapse
Affiliation(s)
- Katie Pollock
- Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
- Cancer Research UK Beatson Institute, Drug Discovery Programme, Glasgow, G61 1BD, United Kingdom
| | - Manjuan Liu
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
| | - Mariola Zaleska
- Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
| | - Mirco Meniconi
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom
| | - Mark Pfuhl
- School of Cardiovascular Medicine and Sciences and Randall Centre, King's College London, Guy's Campus, London, SE1 1UL, United Kingdom
| | - Ian Collins
- Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom.
| | - Sebastian Guettler
- Divisions of Structural Biology & Cancer Biology, The Institute of Cancer Research (ICR), London, SW7 3RP, United Kingdom.
| |
Collapse
|