1
|
Mertinkus KR, Oxenfarth A, Richter C, Wacker A, Mata CP, Carazo JM, Schlundt A, Schwalbe H. Dissecting the Conformational Heterogeneity of Stem-Loop Substructures of the Fifth Element in the 5'-Untranslated Region of SARS-CoV-2. J Am Chem Soc 2024. [PMID: 39442924 DOI: 10.1021/jacs.4c08406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Throughout the family of coronaviruses, structured RNA elements within the 5' region of the genome are highly conserved. The fifth stem-loop element from SARS-CoV-2 (5_SL5) represents an example of an RNA structural element, repeatedly occurring in coronaviruses. It contains a conserved, repetitive fold within its substructures SL5a and SL5b. We herein report the detailed characterization of the structure and dynamics of elements SL5a and SL5b that are located immediately upstream of the SARS-CoV-2 ORF1a/b start codon. Exploiting the unique ability of solution NMR methods, we show that the structures of both apical loops are modulated by structural differences in the remote parts located in their stem regions. We further integrated our high-resolution models of SL5a/b into the context of full-length 5_SL5 structures by combining different structural biology methods. Finally, we evaluated the impact of the two most common VoC mutations within 5_SL5 with respect to individual base-pair stability.
Collapse
Affiliation(s)
- Klara R Mertinkus
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Andreas Oxenfarth
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Christian Richter
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Carlos P Mata
- Biocomputing Unit, Department of Macromolecular Structures, National Centre for Biotechnology (CSIC), Darwin 3, Madrid 28049, Spain
| | - Jose Maria Carazo
- Biocomputing Unit, Department of Macromolecular Structures, National Centre for Biotechnology (CSIC), Darwin 3, Madrid 28049, Spain
| | - Andreas Schlundt
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Institute of Biochemistry, University of Greifswald, Greifswald 17489, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| |
Collapse
|
2
|
Mertinkus KR, Grün JT, Altincekic N, Bains JK, Ceylan B, Ferner JP, Frydman L, Fürtig B, Hengesbach M, Hohmann KF, Hymon D, Kim J, Knezic B, Novakovic M, Oxenfarth A, Peter SA, Qureshi NS, Richter C, Scherf T, Schlundt A, Schnieders R, Schwalbe H, Stirnal E, Sudakov A, Vögele J, Wacker A, Weigand JE, Wirmer-Bartoschek J, Martin MAW, Wöhnert J. 1H, 13C and 15N chemical shift assignment of the stem-loops 5b + c from the 5'-UTR of SARS-CoV-2. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:17-25. [PMID: 35178672 PMCID: PMC8853908 DOI: 10.1007/s12104-021-10053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/16/2021] [Indexed: 06/14/2023]
Abstract
The ongoing pandemic of the respiratory disease COVID-19 is caused by the SARS-CoV-2 (SCoV2) virus. SCoV2 is a member of the Betacoronavirus genus. The 30 kb positive sense, single stranded RNA genome of SCoV2 features 5'- and 3'-genomic ends that are highly conserved among Betacoronaviruses. These genomic ends contain structured cis-acting RNA elements, which are involved in the regulation of viral replication and translation. Structural information about these potential antiviral drug targets supports the development of novel classes of therapeutics against COVID-19. The highly conserved branched stem-loop 5 (SL5) found within the 5'-untranslated region (5'-UTR) consists of a basal stem and three stem-loops, namely SL5a, SL5b and SL5c. Both, SL5a and SL5b feature a 5'-UUUCGU-3' hexaloop that is also found among Alphacoronaviruses. Here, we report the extensive 1H, 13C and 15N resonance assignment of the 37 nucleotides (nts) long sequence spanning SL5b and SL5c (SL5b + c), as basis for further in-depth structural studies by solution NMR spectroscopy.
Collapse
Affiliation(s)
- Klara R Mertinkus
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - J Tassilo Grün
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Herzl St. 234, 760001, Rehovot, Israel
| | - Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Betül Ceylan
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Jan-Peter Ferner
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Herzl St. 234, 760001, Rehovot, Israel
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Katharina F Hohmann
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Daniel Hymon
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Jihyun Kim
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Herzl St. 234, 760001, Rehovot, Israel
| | - Božana Knezic
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Mihajlo Novakovic
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Herzl St. 234, 760001, Rehovot, Israel
- Institute for Biochemistry, ETH Zürich, Hönggerbergring 64, 8093, Zürich, Switzerland
| | - Andreas Oxenfarth
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Stephen A Peter
- Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | | | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Tali Scherf
- Department of Chemical Research Support, Weizmann Institute of Science, Herzl St. 234, 760001, Rehovot, Israel
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Robbin Schnieders
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Deutero GmbH, Am Ring 29, 56288, Kastellaun, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany.
| | - Elke Stirnal
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Alexey Sudakov
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Jennifer Vögele
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Julia E Weigand
- Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Maria A Wirtz Martin
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| |
Collapse
|
3
|
Ali S, Nedvědová Š, Badshah G, Afridi MS, Abdullah, Dutra LM, Ali U, Faria SG, Soares FL, Rahman RU, Cançado FA, Aoyanagi MM, Freire LG, Santos AD, Barison A, Oliveira CA. NMR spectroscopy spotlighting immunogenicity induced by COVID-19 vaccination to mitigate future health concerns. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:199-214. [PMID: 36032416 PMCID: PMC9393187 DOI: 10.1016/j.crimmu.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, the disease and immunogenicity affected by COVID-19 vaccination at the metabolic level are described considering the use of nuclear magnetic resonance (NMR) spectroscopy for the analysis of different biological samples. Consistently, we explain how different biomarkers can be examined in the saliva, blood plasma/serum, bronchoalveolar-lavage fluid (BALF), semen, feces, urine, cerebrospinal fluid (CSF) and breast milk. For example, the proposed approach for the given samples can allow one to detect molecular biomarkers that can be relevant to disease and/or vaccine interference in a system metabolome. The analysis of the given biomaterials by NMR often produces complex chemical data which can be elucidated by multivariate statistical tools, such as PCA and PLS-DA/OPLS-DA methods. Moreover, this approach may aid to improve strategies that can be helpful in disease control and treatment management in the future. NMR analysis of various bio-samples can explore disease course and vaccine interaction. Immunogenicity and reactogenicity caused by COVID-19 vaccination can be studied by NMR. Vaccine interaction alters metabolic pathway(s) at a certain stage, and this mechanism can be probed at the metabolic level.
Collapse
|
4
|
Zafferani M, Haddad C, Luo L, Davila-Calderon J, Chiu LY, Mugisha CS, Monaghan AG, Kennedy AA, Yesselman JD, Gifford RJ, Tai AW, Kutluay SB, Li ML, Brewer G, Tolbert BS, Hargrove AE. Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures. SCIENCE ADVANCES 2021; 7:eabl6096. [PMID: 34826236 PMCID: PMC8626076 DOI: 10.1126/sciadv.abl6096] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/06/2021] [Indexed: 05/15/2023]
Abstract
The SARS-CoV-2 pandemic, and the likelihood of future coronavirus pandemics, emphasized the urgent need for development of novel antivirals. Small-molecule chemical probes offer both to reveal aspects of virus replication and to serve as leads for antiviral therapeutic development. Here, we report on the identification of amiloride-based small molecules that potently inhibit OC43 and SARS-CoV-2 replication through targeting of conserved structured elements within the viral 5′-end. Nuclear magnetic resonance–based structural studies revealed specific amiloride interactions with stem loops containing bulge like structures and were predicted to be strongly bound by the lead amilorides in retrospective docking studies. Amilorides represent the first antiviral small molecules that target RNA structures within the 5′ untranslated regions and proximal region of the CoV genomes. These molecules will serve as chemical probes to further understand CoV RNA biology and can pave the way for the development of specific CoV RNA–targeted antivirals.
Collapse
Affiliation(s)
- Martina Zafferani
- Chemistry Department, Duke University, 124 Science Drive, Durham, NC 27705, USA
| | - Christina Haddad
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 441106, USA
| | - Le Luo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 441106, USA
| | | | - Liang-Yuan Chiu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 441106, USA
| | - Christian Shema Mugisha
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Adeline G. Monaghan
- Chemistry Department, Duke University, 124 Science Drive, Durham, NC 27705, USA
| | - Andrew A. Kennedy
- Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, 1150 W Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Joseph D. Yesselman
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Robert J. Gifford
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd., Bearsden, Glasgow G61 1QH, UK
| | - Andrew W. Tai
- Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, 1150 W Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Blanton S. Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 441106, USA
| | - Amanda E. Hargrove
- Chemistry Department, Duke University, 124 Science Drive, Durham, NC 27705, USA
| |
Collapse
|
5
|
Richter C, Hohmann KF, Toews S, Mathieu D, Altincekic N, Bains JK, Binas O, Ceylan B, Duchardt-Ferner E, Ferner J, Fürtig B, Grün JT, Hengesbach M, Hymon D, Jonker HRA, Knezic B, Korn SM, Landgraf T, Löhr F, Peter SA, Pyper DJ, Qureshi NS, Schlundt A, Schnieders R, Stirnal E, Sudakov A, Vögele J, Weigand JE, Wirmer-Bartoschek J, Witt K, Wöhnert J, Schwalbe H, Wacker A. 1H, 13C and 15N assignment of stem-loop SL1 from the 5'-UTR of SARS-CoV-2. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:467-474. [PMID: 34453696 PMCID: PMC8401371 DOI: 10.1007/s12104-021-10047-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 05/27/2023]
Abstract
The stem-loop (SL1) is the 5'-terminal structural element within the single-stranded SARS-CoV-2 RNA genome. It is formed by nucleotides 7-33 and consists of two short helical segments interrupted by an asymmetric internal loop. This architecture is conserved among Betacoronaviruses. SL1 is present in genomic SARS-CoV-2 RNA as well as in all subgenomic mRNA species produced by the virus during replication, thus representing a ubiquitous cis-regulatory RNA with potential functions at all stages of the viral life cycle. We present here the 1H, 13C and 15N chemical shift assignment of the 29 nucleotides-RNA construct 5_SL1, which denotes the native 27mer SL1 stabilized by an additional terminal G-C base-pair.
Collapse
Affiliation(s)
- Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Katharina F Hohmann
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Sabrina Toews
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Daniel Mathieu
- Bruker BioSpin, Silberstreifen 4, 76287, Rheinstetten, Germany
| | - Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Oliver Binas
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- BioNTech SE, An der Goldgrube 12, 55131, Mainz, Germany
| | - Betül Ceylan
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Institute for Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Jan Ferner
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - J Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Faculty of Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Daniel Hymon
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Hendrik R A Jonker
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Bozana Knezic
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Sophie M Korn
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Institute for Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Tom Landgraf
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Frank Löhr
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Institute for Biophysical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Stephen A Peter
- Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany
| | - Dennis J Pyper
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Nusrat S Qureshi
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Andreas Schlundt
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Institute for Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Robbin Schnieders
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Deutero GmbH, Am Ring 29, 56288, Kastellaun, Germany
| | - Elke Stirnal
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Alexey Sudakov
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Jennifer Vögele
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Institute for Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Julia E Weigand
- Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Kerstin Witt
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
| | - Jens Wöhnert
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany
- Institute for Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany.
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue- Straße 7, 60438, Frankfurt, Germany.
| |
Collapse
|
6
|
Chen SC, Olsthoorn RCL, Yu CH. Structural phylogenetic analysis reveals lineage-specific RNA repetitive structural motifs in all coronaviruses and associated variations in SARS-CoV-2. Virus Evol 2021; 7:veab021. [PMID: 34141447 PMCID: PMC8206606 DOI: 10.1093/ve/veab021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In many single-stranded (ss) RNA viruses, the cis-acting packaging signal that confers selectivity genome packaging usually encompasses short structured RNA repeats. These structural units, termed repetitive structural motifs (RSMs), potentially mediate capsid assembly by specific RNA–protein interactions. However, general knowledge of the conservation and/or the diversity of RSMs in the positive-sense ssRNA coronaviruses (CoVs) is limited. By performing structural phylogenetic analysis, we identified a variety of RSMs in nearly all CoV genomic RNAs, which are exclusively located in the 5′-untranslated regions (UTRs) and/or in the inter-domain regions of poly-protein 1ab coding sequences in a lineage-specific manner. In all alpha- and beta-CoVs, except for Embecovirus spp, two to four copies of 5′-gUUYCGUc-3′ RSMs displaying conserved hexa-loop sequences were generally identified in Stem-loop 5 (SL5) located in the 5′-UTRs of genomic RNAs. In Embecovirus spp., however, two to eight copies of 5′-agc-3′/guAAu RSMs were found in the coding regions of non-structural protein (NSP) 3 and/or NSP15 in open reading frame (ORF) 1ab. In gamma- and delta-CoVs, other types of RSMs were found in several clustered structural elements in 5′-UTRs and/or ORF1ab. The identification of RSM-encompassing structural elements in all CoVs suggests that these RNA elements play fundamental roles in the life cycle of CoVs. In the recently emerged SARS-CoV-2, beta-CoV-specific RSMs are also found in its SL5, displaying two copies of 5′-gUUUCGUc-3′ motifs. However, multiple sequence alignment reveals that the majority of SARS-CoV-2 possesses a variant RSM harboring SL5b C241U, and intriguingly, several variations in the coding sequences of viral proteins, such as Nsp12 P323L, S protein D614G, and N protein R203K-G204R, are concurrently found with such variant RSM. In conclusion, the comprehensive exploration for RSMs reveals phylogenetic insights into the RNA structural elements in CoVs as a whole and provides a new perspective on variations currently found in SARS-CoV-2.
Collapse
Affiliation(s)
- Shih-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - René C L Olsthoorn
- Department of Supramolecular Biomaterials Chemistry, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC, Leiden,The Netherlands
| | - Chien-Hung Yu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng-Kung University, No.1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
7
|
Bottaro S, Bussi G, Lindorff-Larsen K. Conformational Ensembles of Noncoding Elements in the SARS-CoV-2 Genome from Molecular Dynamics Simulations. J Am Chem Soc 2021; 143:8333-8343. [PMID: 34039006 PMCID: PMC8188756 DOI: 10.1021/jacs.1c01094] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/17/2022]
Abstract
The 5' untranslated region (UTR) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome is a conserved, functional and structured genomic region consisting of several RNA stem-loop elements. While the secondary structure of such elements has been determined experimentally, their three-dimensional structures are not known yet. Here, we predict structure and dynamics of five RNA stem loops in the 5'-UTR of SARS-CoV-2 by extensive atomistic molecular dynamics simulations, more than 0.5 ms of aggregate simulation time, in combination with enhanced sampling techniques. We compare simulations with available experimental data, describe the resulting conformational ensembles, and identify the presence of specific structural rearrangements in apical and internal loops that may be functionally relevant. Our atomic-detailed structural predictions reveal a rich dynamics in these RNA molecules, could help the experimental characterization of these systems, and provide putative three-dimensional models for structure-based drug design studies.
Collapse
Affiliation(s)
- Sandro Bottaro
- Structural
Biology and NMR Laboratory & Linderstrøm-Lang Centre for
Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Giovanni Bussi
- Scuola
Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Kresten Lindorff-Larsen
- Structural
Biology and NMR Laboratory & Linderstrøm-Lang Centre for
Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|