1
|
Van Malderen K, Hanning N, Lambrechts H, Haverhals T, Van Marcke S, Ceuleers H, De Man JG, De Winter BY, Lamote K, De Schepper HU. Volatile organic compound profiling as a potential biomarker in irritable bowel syndrome: A feasibility study. Front Med (Lausanne) 2022; 9:960000. [PMID: 35991639 PMCID: PMC9388331 DOI: 10.3389/fmed.2022.960000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Background Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder for which no diagnostic tools are currently available. Patients are diagnosed using the Rome IV criteria and subtyped into a diarrhea, constipation, or mixed phenotype based on their dominant stool pattern. A recent development in the biomarker area is the analysis of volatile organic compounds (VOCs). The aim of this study was to evaluate the potential of VOCs as diagnostic and phenotypic biomarkers for IBS in breath and fecal samples. Materials and methods Breath and fecal samples from IBS patients and healthy asymptomatic controls (HC) were analyzed with multicapillary column/ion mobility spectrometry (MCC/IMS) and classification models were created based upon VOCs and clinical characteristics. Discussion Irritable bowel syndrome patients were differentiated from HC by means of volatile profiling in both breath and fecal samples with area under the curve (AUCs) of respectively 0.62 and 0.80. Patient subtypes could also be differentiated from each other with AUCs ranging between 0.65 and 0.78. Furthermore, VOC models could differentiate IBS patients based on clinical characteristics like psychological comorbidities and microbiota-influencing therapies. Conclusion This study is the first to demonstrate the use of VOC profiling with the help of MCC/IMS to differentiate IBS patients. Furthermore, the importance of clinical characteristics beside the dominant stool pattern in the differentiation of IBS patients was emphasized.
Collapse
Affiliation(s)
- Kathleen Van Malderen
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Nikita Hanning
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Helen Lambrechts
- Medical School, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Tine Haverhals
- Medical School, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Silke Van Marcke
- Medical School, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joris G. De Man
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y. De Winter
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Heiko U. De Schepper
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
- *Correspondence: Heiko U. De Schepper,
| |
Collapse
|
2
|
Lorenz D, Maurer F, Trautner K, Fink T, Hüppe T, Sessler DI, Baumbach JI, Volk T, Kreuer S. Adhesion of volatile propofol to breathing circuit tubing. J Breath Res 2017; 11:036005. [PMID: 28825414 DOI: 10.1088/1752-7163/aa795d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Propofol in exhaled breath can be measured and may provide a real-time estimate of plasma concentration. However, propofol is absorbed in plastic tubing, thus estimates may fail to reflect lung/blood concentration if expired gas is not extracted directly from the endotracheal tube. We evaluated exhaled propofol in five ventilated ICU patients who were sedated with propofol. Exhaled propofol was measured once per minute using ion mobility spectrometry. Exhaled air was sampled directly from the endotracheal tube and at the ventilator end of the expiratory side of the anesthetic circuit. The circuit was disconnected from the patient and propofol was washed out with a separate clean ventilator. Propofol molecules, which discharged from the expiratory portion of the breathing circuit, were measured for up to 60 h. We also determined whether propofol passes through the plastic of breathing circuits. A total of 984 data pairs (presented as median values, with 95% confidence interval), consisting of both concentrations were collected. The concentration of propofol sampled near the patient was always substantially higher, at 10.4 [10.25-10.55] versus 5.73 [5.66-5.88] ppb (p < 0.001). The reduction in concentration over the breathing circuit tubing was 4.58 [4.48-4.68] ppb, 3.46 [3.21-3.73] in the first hour, 4.05 [3.77-4.34] in the second hour, and 4.01 [3.36-4.40] in the third hour. Out-gassing propofol from the breathing circuit remained at 2.8 ppb after 60 h of washing out. Diffusion through the plastic was not observed. Volatile propofol binds or adsorbs to the plastic of a breathing circuit with saturation kinetics. The bond is reversible so propofol can be washed out from the plastic. Our data confirm earlier findings that accurate measurements of volatile propofol require exhaled air to be sampled as close as possible to the patient.
Collapse
Affiliation(s)
- Dominik Lorenz
- CBR-Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Building 57, D-66421 Homburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|