1
|
Gross JH. Atmospheric pressure field desorption-trapped ion mobility-mass spectrometry coupling. Anal Bioanal Chem 2024; 416:3313-3323. [PMID: 38589615 PMCID: PMC11106181 DOI: 10.1007/s00216-024-05282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
While field ionization (FI) and field desorption (FD) are established soft vacuum ionization methods in mass spectrometry (MS), the technique of atmospheric pressure field desorption (APFD) has only recently been added to the repertoire. Similar to FI and FD, APFD can yield both positive even-electron ions of highly polar or ionic compounds and positive molecular ions, M+•, e.g., of polycyclic aromatic compounds. Thus, a dedicated APFD source assembly has been constructed and demonstrated to allow for robust APFD operation. This device also enabled observation of the emitter during operation and allowed for resistive emitter heating, thereby speeding up the desorption of the analytes and expanding the range of analytes accessible to APFD. While initial work was done using a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer, the new APFD source offered the flexibility to also be used on a trapped ion mobility-quadrupole-time-of-flight (TIMS-Q-TOF) instrument, and thus, it would be possible to be mounted to any Bruker mass spectrometer featuring an atmospheric pressure (AP) interface. Operating an APFD source at a TIMS-Q-TOF instrument called for the exploration of the combined use of APFD and TIMS. Here, operation, basic properties, and capabilities of this new atmospheric pressure field desorption-trapped ion mobility-mass spectrometry (APFD-TIMS-MS) coupling are described. APFD-TIMS-MS is employed for the separation of individual components of oligomers and for the accurate determination of their collision cross section (CCS). This work describes the application of APFD-TIMS-MS on poly(ethylene glycol) forming [M + Na]+ ions by cationization and on an amine-terminated poly(propylene glycol) yielding [M + H]+ ions. Some compounds forming molecular ions, M+•, by field ionization such as [60]fullerene and a mixture of four polycyclic aromatic hydrocarbons (PAHs) are examined. In APFD-TIMS-MS, the limits of detection (LODs) of fluoranthene and benzo[a]pyrene M+• ions are determined as ≈100 pg and <1 pg, respectively. Finally, [60]fullerene is analyzed by negative-ion APFD-TIMS-MS where it yields a molecular anion, M-•.
Collapse
Affiliation(s)
- Jürgen H Gross
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Lanshoeft C, Schütz R, Lozac'h F, Schlotterbeck G, Walles M. Potential of measured relative shifts in collision cross section values for biotransformation studies. Anal Bioanal Chem 2024; 416:559-568. [PMID: 38040943 PMCID: PMC10761390 DOI: 10.1007/s00216-023-05063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) separates gas phase ions due to differences in drift time from which reproducible and analyte-specific collision cross section (CCS) values can be derived. Internally conducted in vitro and in vivo metabolism (biotransformation) studies indicated repetitive shifts in measured CCS values (CCSmeas) between parent drugs and their metabolites. Hence, the purpose of the present article was (i) to investigate if such relative shifts in CCSmeas were biotransformation-specific and (ii) to highlight their potential benefits for biotransformation studies. First, mean CCSmeas values of 165 compounds were determined (up to n = 3) using a travelling wave IMS-MS device with nitrogen as drift gas (TWCCSN2, meas). Further comparison with their predicted values (TWCCSN2, pred, Waters CCSonDemand) resulted in a mean absolute error of 5.1%. Second, a reduced data set (n = 139) was utilized to create compound pairs (n = 86) covering eight common types of phase I and II biotransformations. Constant, discriminative, and almost non-overlapping relative shifts in mean TWCCSN2, meas were obtained for demethylation (- 6.5 ± 2.1 Å2), oxygenation (hydroxylation + 3.8 ± 1.4 Å2, N-oxidation + 3.4 ± 3.3 Å2), acetylation (+ 13.5 ± 1.9 Å2), sulfation (+ 17.9 ± 4.4 Å2), glucuronidation (N-linked: + 41.7 ± 7.5 Å2, O-linked: + 38.1 ± 8.9 Å2), and glutathione conjugation (+ 49.2 ± 13.2 Å2). Consequently, we propose to consider such relative shifts in TWCCSN2, meas (rather than absolute values) as well for metabolite assignment/confirmation complementing the conventional approach to associate changes in mass-to-charge (m/z) values between a parent drug and its metabolite(s). Moreover, the comparison of relative shifts in TWCCSN2, meas significantly simplifies the mapping of metabolites into metabolic pathways as demonstrated.
Collapse
Affiliation(s)
- Christian Lanshoeft
- Biomedical Research, PK Sciences, Novartis Pharma AG, Fabrikstrasse 14 (Novartis Campus), 4056, Basel, Switzerland.
| | - Raphael Schütz
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Frédéric Lozac'h
- Biomedical Research, PK Sciences, Novartis Pharma AG, Fabrikstrasse 14 (Novartis Campus), 4056, Basel, Switzerland
| | - Götz Schlotterbeck
- School of Life Sciences FHNW, Institute for Chemistry and Bioanalytics, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
- Department of Forensic Chemistry and Toxicology, Institute of Forensic Medicine, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland
| | - Markus Walles
- Biomedical Research, PK Sciences, Novartis Pharma AG, Fabrikstrasse 14 (Novartis Campus), 4056, Basel, Switzerland
| |
Collapse
|
3
|
Mosekiemang TT, Stander MA, de Villiers A. Ultra-high pressure liquid chromatography coupled to travelling wave ion mobility-time of flight mass spectrometry for the screening of pharmaceutical metabolites in wastewater samples: Application to antiretrovirals. J Chromatogr A 2021; 1660:462650. [PMID: 34788673 DOI: 10.1016/j.chroma.2021.462650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
The presence of pharmaceutical compounds in the aquatic environment is a significant environmental health concern, which is exacerbated by recent evidence of the contribution of drug metabolites to the overall pharmaceutical load. In light of a recent report of the occurrence of metabolites of antiretroviral drugs (ARVDs) in wastewater, we investigate in the present work the occurrence of further ARVD metabolites in samples obtained from a domestic wastewater treatment plant in the Western Cape, South Africa. Pharmacokinetic data indicate that ARVDs are biotransformed into several positional isomeric metabolites, only two of which have been reported wastewater samples. Given the challenges associated with the separation and identification of isomeric species in complex wastewater samples, a method based on liquid chromatography hyphenated to ion mobility spectrometry-high resolution mass spectrometry (LC-IMS-HR-MS) was implemented. Gradient LC separation was achieved on a sub-2 µm reversed phase column, while the quadrupole-time-of-flight MS was operated in data independent acquisition (DIA) mode to increase spectral coverage of detected features. A mass defect filter (MDF) template was implemented to detect ARVD metabolites with known phase I and phase II mass shifts and fractional mass differences and to filter out potential interferents. IMS proved particularly useful in filtering the MS data for co-eluting species according to arrival time to provide cleaner mass spectra. This approach allowed us to confirm the presence of two known hydroxylated efavirenz and nevirapine metabolites using authentic standards, and to tentatively identify a carboxylate metabolite of abacavir previously reported in literature. Furthermore, three hydroxylated-, two sulphated and one glucuronidated metabolite of efavirenz, two hydroxylated metabolites of nevirapine and one hydroxylated metabolite of ritonavir were tentatively or putatively identified in wastewater samples for the first time. Assignment of the metabolites is discussed in terms of high resolution fragmentation data, while collisional cross section (CCS) values measured for the detected analytes are reported to facilitate further work in this area.
Collapse
Affiliation(s)
- Tlou T Mosekiemang
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Maria A Stander
- Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
4
|
Li A, Conant CR, Zheng X, Bloodsworth KJ, Orton DJ, Garimella SVB, Attah IK, Nagy G, Smith RD, Ibrahim YM. Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations. Anal Chem 2020; 92:14976-14982. [PMID: 33136380 DOI: 10.1021/acs.analchem.0c02829] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The collision cross section (CCS) is an important property that aids in the structural characterization of molecules. Here, we investigated the CCS calibration accuracy with traveling wave ion mobility spectrometry (TWIMS) separations in structures for lossless ion manipulations (SLIM) using three sets of calibrants. A series of singly negatively charged phospholipids and bile acids were calibrated in nitrogen buffer gas using two different TW waveform profiles (square and sine) and amplitudes (20, 25, and 30 V0-p). The calibration errors for the three calibrant sets (Agilent tuning mixture, polyalanine, and one assembled in-house) showed negligible differences using a sine-shaped TW waveform. Calibration errors were all within 1-2% of the drift tube ion mobility spectrometry (DTIMS) measurements, with lower errors for sine waveforms, presumably due to the lower average and maximum fields experienced by ions. Finally, ultrahigh-resolution multipass (long path length) SLIM TWIMS separations demonstrated improved CCS calibration for phospholipid and bile acid isomers.
Collapse
Affiliation(s)
- Ailin Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christopher R Conant
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gabe Nagy
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
5
|
Bijlsma L, Bade R, Been F, Celma A, Castiglioni S. Perspectives and challenges associated with the determination of new psychoactive substances in urine and wastewater - A tutorial. Anal Chim Acta 2020; 1145:132-147. [PMID: 33453874 DOI: 10.1016/j.aca.2020.08.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022]
Abstract
New psychoactive substances (NPS), often designed as (legal) substitutes to conventional illicit drugs, are constantly emerging in the drug market and being commercialized in different ways and forms. Their use continues to cause public health problems and is therefore of major concern in many countries. Monitoring NPS use, however, is arduous and different sources of information are required to get more insight of the prevalence and diffusion of NPS use. The determination of NPS in pooled urine and wastewater has shown great potential, adding a different and complementary light on this issue. However, it also presents analytical challenges and limitations that must be taken into account such as the complexity of the matrices, the high sensitivity and selectivity required in the analytical methods as a consequence of the low analyte concentrations as well as the rapid transience of NPS on the drug market creating a scenario with constantly moving analytical targets. Analytical investigation of NPS in pooled urine and wastewater is based on liquid chromatography hyphenated to mass spectrometry and can follow different strategies: target, suspect and non-target analysis. This work aims to discuss the advantages and disadvantages of the different data acquisition workflows and data exploration approaches in mass spectrometry, but also pays attention to new developments such as ion mobility and the use of in-silico prediction tools to improve the identification capabilities in high-complex samples. This tutorial gives an insight into this emerging topic of current concern, and describes the experience gathered within different collaborations and projects supported by key research articles and illustrative practical examples.
Collapse
Affiliation(s)
- L Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071, Castellón, Spain.
| | - R Bade
- University of South Australia, UniSA: Clinical and Health Sciences, Health and Biomedical Innovation, South Australia, 5000, Australia.
| | - F Been
- KWR Water Research Institute, Chemical Water Quality and Health, 3430 BB, Nieuwegein, the Netherlands
| | - A Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, 12071, Castellón, Spain
| | - S Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, 20156, Milan, Italy
| |
Collapse
|
6
|
Bijlsma L, Berntssen MHG, Merel S. A Refined Nontarget Workflow for the Investigation of Metabolites through the Prioritization by in Silico Prediction Tools. Anal Chem 2019; 91:6321-6328. [DOI: 10.1021/acs.analchem.9b01218] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lubertus Bijlsma
- Research Institute for Pesticides and Water, University Jaume I, Avenida Sos Baynat s/n, E-12071 Castellón, Spain
- Institute of Marine Research, P.O. Box 2029 Nordness, N-5817 Bergen, Norway
| | | | - Sylvain Merel
- Research Institute for Pesticides and Water, University Jaume I, Avenida Sos Baynat s/n, E-12071 Castellón, Spain
- Institute of Marine Research, P.O. Box 2029 Nordness, N-5817 Bergen, Norway
| |
Collapse
|
7
|
Metabolism of the synthetic cannabinoids AMB-CHMICA and 5C-AKB48 in pooled human hepatocytes and rat hepatocytes analyzed by UHPLC-(IMS)-HR-MS E. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1083:189-197. [PMID: 29549742 DOI: 10.1016/j.jchromb.2018.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/19/2018] [Accepted: 03/09/2018] [Indexed: 01/03/2023]
Abstract
The main analytical targets of synthetic cannabinoids are often metabolites. With the high number of new psychoactive substances entering the market, suitable workflows are needed for analytical target identification in biological samples. The aims of this study were to identify the main metabolites of the synthetic cannabinoids, AMB-CHMICA and 5C-AKB48, using an in silico-assisted workflow with analytical data acquired using ultra-high-performance liquid chromatography-(ion mobility spectroscopy)-high resolution-mass spectrometry in data-independent acquisition mode (UHPLC-(IMS)-HR-MSE). The metabolites were identified after incubation with rat and pooled human hepatocytes using UHPLC-HR-MSE, followed by UHPLC-IMS-HR-MSE. Metabolites of AMB-CHMICA and 5C-AKB48 were predicted with Meteor (Lhasa Ltd) and imported to the UNIFI software (Waters). The predicted metabolites were assigned to analytical components supported by the UNIFI in silico fragmentation tool. The main metabolic pathway of AMB-CHMICA was O-demethylation and hydroxylation of the methylhexyl moiety. For 5C-AKB48, the main metabolic pathways were hydroxylation(s) of the adamantyl moiety and oxidative dechlorination with subsequent oxidation to the ω-COOH. The matrix components in the metabolite spectra were reduced with IMS, which improved the accuracy of the spectral interpretation; however, this left fewer fragment ions for assigning sites of metabolism. Meteor was able to predict the majority of the metabolites, with the most notable exception being the oxidative dechlorination and, consequently, all metabolites that underwent that transformation pathway. Oxidative dechlorination of ω-chloroalkanes in humans has not been previously reported in the literature. The postulated metabolites can be used for screening of biological samples, with four-dimensional identification based on retention time, collision cross section, precursor ion, and fragment ions.
Collapse
|
8
|
Righetti L, Bergmann A, Galaverna G, Rolfsson O, Paglia G, Dall'Asta C. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Anal Chim Acta 2018. [PMID: 29523251 DOI: 10.1016/j.aca.2018.01.047] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The recent hyphenation of ion mobility spectrometry (IMS) with high resolution mass spectrometry (HRMS) has risen as a powerful technique for both targeted and non-targeted screening, reducing background noise and allowing separation of isomeric and isobaric compounds. Nevertheless, such an approach remains largely unexplored in food safety applications, such as mycotoxin analysis. To implement ion mobility in routinely MS-based mycotoxin workflows, searchable databases with collusion cross section (CCS) values and accurate mass-values are required. This paper provides for the first time a traveling-wave IMS (TWIMS)-derived CCS database for mycotoxins, including more than 100 CCS values. The measurements showed high reproducibility (RSD < 2%) across different instrumental conditions as well as several complex cereal matrices, showing a mean inter-matrix precision of RSD <0.9%. As a proof of concept, the database was applied to the analysis of several spiked as well as naturally incurred cereal-based samples. In addition, the effect of adducts on the drift time was studied in a series of mycotoxins in order to understand potential deviations from expected drift time behaviors. Overall, our study confirmed that CCS values represent a physicochemical property that can be used alongside the traditional molecular identifiers of precursor ion accurate mass, fragment ions, isotopic pattern, and retention time.
Collapse
Affiliation(s)
- Laura Righetti
- Department of Food Science, University of Parma, Viale delle Scienze 17/A, I-43124 Parma, Italy
| | - Andreas Bergmann
- Center for Systems Biology, Medical Department, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Gianni Galaverna
- Department of Food Science, University of Parma, Viale delle Scienze 17/A, I-43124 Parma, Italy
| | - Ottar Rolfsson
- Center for Systems Biology, Medical Department, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Giuseppe Paglia
- Center of Biomedicine, European Academy of Bolzano/Bozen, Via Galvani 31, Bolzano 39100, Italy
| | - Chiara Dall'Asta
- Department of Food Science, University of Parma, Viale delle Scienze 17/A, I-43124 Parma, Italy.
| |
Collapse
|
9
|
Regueiro J, Negreira N, Berntssen MHG. Ion-Mobility-Derived Collision Cross Section as an Additional Identification Point for Multiresidue Screening of Pesticides in Fish Feed. Anal Chem 2016; 88:11169-11177. [PMID: 27779869 DOI: 10.1021/acs.analchem.6b03381] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ion mobility spectrometry allows for the measurement of the collision cross section (CCS), which provides information about the shape of an ionic molecule in the gas phase. Although the hyphenation of traveling-wave ion mobility spectrometry (TWIMS) with high-resolution quadrupole time-of-flight mass spectrometry (QTOFMS) has been mainly used for structural elucidation purposes, its potential for fast screening of small molecules in complex samples has not yet been thoroughly evaluated. The current work explores the capabilities of ultrahigh-performance liquid chromatography (UHPLC) coupled to a new design TWIMS-QTOFMS for the screening and identification of a large set of pesticides in complex salmon feed matrices. A database containing TWIMS-derived CCS values for more than 200 pesticides is hereby presented. CCS measurements showed high intra- and interday repeatability (RSD < 1%), and they were not affected by the complexity of the investigated matrices (ΔCCS ≤ 1.8%). The use of TWIMS in combination with QTOFMS was demonstrated to provide an extra-dimension, which resulted in increased peak capacity and selectivity in real samples. Thus, many false-positive detections could be straightforwardly discarded just by applying a maximum ΔCCS tolerance of ±2%. CCS was proposed as a valuable additional identification point in the pesticides screening workflow. Several commercial fish feed samples were finally analyzed to demonstrate the applicability of the proposed approach. Ethoxyquin and pirimiphos-methyl were identified in most of the analyzed samples, whereas tebuconazole and piperonil butoxide were identified for the first time in fish feed samples.
Collapse
Affiliation(s)
- Jorge Regueiro
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N-5817 Bergen, Norway
| | - Noelia Negreira
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N-5817 Bergen, Norway
| | - Marc H G Berntssen
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N-5817 Bergen, Norway
| |
Collapse
|