1
|
Chiesa C, Sjogreen-Gleisner K, Walrand S, Strigari L, Flux G, Gear J, Stokke C, Gabina PM, Bernhardt P, Konijnenberg M. EANM dosimetry committee series on standard operational procedures: a unified methodology for 99mTc-MAA pre- and 90Y peri-therapy dosimetry in liver radioembolization with 90Y microspheres. EJNMMI Phys 2021; 8:77. [PMID: 34767102 PMCID: PMC8589932 DOI: 10.1186/s40658-021-00394-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/21/2021] [Indexed: 11/27/2022] Open
Abstract
The aim of this standard operational procedure is to standardize the methodology employed for the evaluation of pre- and post-treatment absorbed dose calculations in 90Y microsphere liver radioembolization. Basic assumptions include the permanent trapping of microspheres, the local energy deposition method for voxel dosimetry, and the patient-relative calibration method for activity quantification.The identity of 99mTc albumin macro-aggregates (MAA) and 90Y microsphere biodistribution is also assumed. The large observed discrepancies in some patients between 99mTc-MAA predictions and actual 90Y microsphere distributions for lesions is discussed. Absorbed dose predictions to whole non-tumoural liver are considered more reliable and the basic predictors of toxicity. Treatment planning based on mean absorbed dose delivered to the whole non-tumoural liver is advised, except in super-selective treatments.Given the potential mismatch between MAA simulation and actual therapy, absorbed doses should be calculated both pre- and post-therapy. Distinct evaluation between target tumours and non-tumoural tissue, including lungs in cases of lung shunt, are vital for proper optimization of therapy. Dosimetry should be performed first according to a mean absorbed dose approach, with an optional, but important, voxel level evaluation. Fully corrected 99mTc-MAA Single Photon Emission Computed Tomography (SPECT)/computed tomography (CT) and 90Y TOF PET/CT are regarded as optimal acquisition methodologies, but, for institutes where SPECT/CT is not available, non-attenuation corrected 99mTc-MAA SPECT may be used. This offers better planning quality than non dosimetric methods such as Body Surface Area (BSA) or mono-compartmental dosimetry. Quantitative 90Y bremsstrahlung SPECT can be used if dedicated correction methods are available.The proposed methodology is feasible with standard camera software and a spreadsheet. Available commercial or free software can help facilitate the process and improve calculation time.
Collapse
Affiliation(s)
- Carlo Chiesa
- Nuclear Medicine Unit, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Stephan Walrand
- Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| | - Lidia Strigari
- Medical Physics Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Glenn Flux
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Caroline Stokke
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Pablo Minguez Gabina
- Department of Medical Physics and Radiation Protection, Gurutzeta/Cruces University Hospital, Barakaldo, Spain
| | - Peter Bernhardt
- Department of Radiation Physics, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Abstract
Transarterial radioembolization with yttrium-90 ( 90 Y) is a mainstay for the treatment of liver cancer. Imaging the distribution following delivery is a concept that dates back to the 1960s. As β particles are created during 90 Y decay, bremsstrahlung radiation is created as the particles interact with tissues, allowing for imaging with a gamma camera. Inherent qualities of bremsstrahlung radiation make its imaging difficult. SPECT and SPECT/CT can be used but suffer from limitations related to low signal-to-noise bremsstrahlung radiation. However, with optimized imaging protocols, clinically adequate images can still be obtained. A finite but detectable number of positrons are also emitted during 90 Y decay, and many studies have demonstrated the ability of commercial PET/CT and PET/MR scanners to image these positrons to understand 90 Y distribution and help quantify dose. PET imaging has been proven to be superior to SPECT for quantitative imaging, and therefore will play an important role going forward as we try and better understand dose/response and dose/toxicity relationships to optimize personalized dosimetry. The availability of PET imaging will likely remain the biggest barrier to its use in routine post- 90 Y imaging; thus, SPECT/CT imaging with optimized protocols should be sufficient for most posttherapy subjective imaging.
Collapse
Affiliation(s)
- Mitchell Rice
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Matthew Krosin
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paul Haste
- Department of Radiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
3
|
Craig AJ, Murray I, Denis-Bacelar AM, Rojas B, Gear JI, Hossen L, Maenhout A, Khan N, Flux GD. Comparison of 90Y SIRT predicted and delivered absorbed doses using a PSF conversion method. Phys Med 2021; 89:1-10. [PMID: 34339928 PMCID: PMC8501309 DOI: 10.1016/j.ejmp.2021.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The aims of this study were to develop and apply a method to correct for the differences in partial volume effects of pre-therapy Technetium-99 m (99mTc)-MAA SPECT and post-therapy Yttrium-90 (90Y) bremsstrahlung SPECT imaging in selective internal radiation therapy, and to use this method to improve quantitative comparison of predicted and delivered 90Y absorbed doses. METHODS The spatial resolution of 99mTc SPECT data was converted to that of 90Y SPECT data using a function calculated from 99mTc and 90Y point spread functions. This resolution conversion method (RCM) was first applied to 99mTc and 90Y SPECT phantom data to validate the method, and then to clinical data to assess the power of 99mTc SPECT imaging to predict the therapeutic absorbed dose. RESULTS The maximum difference between absorbed doses to phantom spheres was 178%. This was reduced to 27% after the RCM was applied. The clinical data demonstrated differences within 38% for mean absorbed doses delivered to the normal liver, which were reduced to 20% after application of the RCM. Analysis of clinical data showed that therapeutic absorbed doses delivered to tumours greater than 100 cm3 were predicted to within 52%, although there were differences of up to 210% for smaller tumours, even after the RCM was applied. CONCLUSIONS The RCM was successfully verified using phantom data. Analysis of the clinical data established that the 99mTc pre-therapy imaging was predictive of the 90Y absorbed dose to the normal liver to within 20%, but had poor predictability for tumours smaller than 100 cm3.
Collapse
Affiliation(s)
- Allison J. Craig
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom,The Institute of Cancer Research, London, United Kingdom,Corresponding author.
| | - Iain Murray
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom,The Institute of Cancer Research, London, United Kingdom
| | | | - Bruno Rojas
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom,The Institute of Cancer Research, London, United Kingdom
| | - Jonathan I. Gear
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom,The Institute of Cancer Research, London, United Kingdom
| | - Lucy Hossen
- Royal Brompton & Harefield NHSFT, London, United Kingdom
| | | | - Nasir Khan
- Chelsea & Westminster NHSFT, London, United Kingdom
| | - Glenn D. Flux
- Joint Department of Physics, Royal Marsden NHSFT, Sutton, United Kingdom,The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
4
|
Kubik A, Budzyńska A, Kacperski K, Maciak M, Kuć M, Piasecki P, Wiliński M, Konior M, Dziuk M, Iller E. Evaluation of qualitative and quantitative data of Y-90 imaging in SPECT/CT and PET/CT phantom studies. PLoS One 2021; 16:e0246848. [PMID: 33566845 PMCID: PMC7875374 DOI: 10.1371/journal.pone.0246848] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/26/2021] [Indexed: 01/06/2023] Open
Abstract
Introduction We aimed to assess the feasibility of SPECT and PET Y-90 imaging, and to compare these modalities by visualizing hot and cold foci in phantoms for varying isotope concentrations. Materials and methods The data was acquired from the Jaszczak and NEMA phantoms. In the Jaszczak phantom Y-90 concentrations of 0.1 MBq/ml and 0.2 MBq/ml were used, while higher concentrations, up to 1.0 MBq/ml, were simulated by acquisition time extension with respect to the standard clinical protocol of 30 sec/projection for SPECT and 30 min/bed position for PET imaging. For NEMA phantom, the hot foci had concentrations of about 4 MB/ml and the background 0.1 or 0.0 MBq/ml. All of the acquired data was analysed both qualitatively and quantitatively. Qualitative assessment was conducted by six observers asked to identify the number of visible cold or hot foci. Inter-observer agreement was assessed. Quantitative analysis included calculations of contrast and contrast-to-noise ratio (CNR), and comparisons with the qualitative results. Results For SPECT data up to two cold foci were discernible, while for PET four foci were visible. We have shown that CNR (with Rose criterion) is a good measure of foci visibility for both modalities. We also found good concordance of qualitative results for the Jaszczak phantom studies between the observers (corresponding Krippendorf’s alpha coefficients of 0.76 to 0.84). In the NEMA phantom without background activity all foci were visible in SPECT/CT images. With isotope in the background, 5 of 6 spheres were discernible (CNR of 3.0 for the smallest foci). For PET studies all hot spheres were visible, regardless of the background activity. Conclusions PET Y-90 imaging provided better results than Bremsstrahlung based SPECT imaging. This indicates that PET/CT might become the method of choice in Y-90 post radioembolization imaging for visualisation of both necrotic and hot lesions in the liver.
Collapse
Affiliation(s)
- Agata Kubik
- Department of Nuclear Medicine, Military Institute of Medicine, Warsaw, Poland
- * E-mail:
| | - Anna Budzyńska
- Department of Nuclear Medicine, Military Institute of Medicine, Warsaw, Poland
- Affidea Mazovian PET/CT Medical Centre, Warsaw, Poland
| | - Krzysztof Kacperski
- Department of Nuclear Medicine, Military Institute of Medicine, Warsaw, Poland
- Particle Acceleration Physics and Technology Division (TJ1), National Centre for Nuclear Research, Otwock—Świerk, Poland
| | - Maciej Maciak
- Radiological Metrology and Biomedical Physics Division (H2), National Centre for Nuclear Research, Otwock—Świerk, Poland
| | - Michał Kuć
- Radiological Metrology and Biomedical Physics Division (H2), National Centre for Nuclear Research, Otwock—Świerk, Poland
| | - Piotr Piasecki
- Department of Interventional Radiology, Military Institute of Medicine, Warsaw, Poland
| | - Maciej Wiliński
- Radiological Metrology and Biomedical Physics Division (H2), National Centre for Nuclear Research, Otwock—Świerk, Poland
| | - Marcin Konior
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock—Świerk, Poland
| | - Mirosław Dziuk
- Department of Nuclear Medicine, Military Institute of Medicine, Warsaw, Poland
- Affidea Mazovian PET/CT Medical Centre, Warsaw, Poland
| | - Edward Iller
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, Otwock—Świerk, Poland
| |
Collapse
|
5
|
İnce C, Karadeniz Ö, Ertay T, Durak H. Collimator and energy window optimization for YTTRIUM-90 bremsstrahlung SPECT imaging. Appl Radiat Isot 2020; 167:109453. [PMID: 33039763 DOI: 10.1016/j.apradiso.2020.109453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/01/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
The optimal collimator and energy window for Yttrium-90 bremsstrahlung SPECT imaging was investigated in the study. Yttrium-90 images were acquired with a dual-head gamma camera, equipped with parallel hole collimators and 90Y vial for different energy windows ranging from 56 to 232 keV. Image quality parameters (sensitivity, %FOV, and S/B) were examined for the energy window and collimator combinations. It is concluded that the optimal SPECT imaging was achieved using FBP Method with a HEGP collimator and the energy window of 90-110 keV.
Collapse
Affiliation(s)
- Caner İnce
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey
| | - Özlem Karadeniz
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey; Department of Physics, Faculty of Sciences, Dokuz Eylül University, 35390, Tınaztepe, İzmir, Turkey.
| | - Türkan Ertay
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey; Department of Nuclear Medicine, Faculty of Medicine, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey
| | - Hatice Durak
- Department of Medical Physics, Institute of Health Sciences, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey; Department of Nuclear Medicine, Faculty of Medicine, Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey
| |
Collapse
|
6
|
Nakanishi K, Yamamoto S. Monte Carlo simulation of the bremsstrahlung X-rays emitted from H-3 and C-14 for the in-vivo imaging of small animals. Appl Radiat Isot 2020; 160:109136. [PMID: 32351228 DOI: 10.1016/j.apradiso.2020.109136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/22/2020] [Accepted: 03/17/2020] [Indexed: 01/31/2023]
Abstract
For the imaging using low energy pure beta-emitting radionuclides, autoradiography is used by slicing the subjects because the range of beta particles is short and thought to be impossible to detect beta particles from outside the subjects. Contrary to this scientific consensus, we recently found that the distributions of C-14 could be measured by detecting the bremsstrahlung X-rays emitted from the solution of C-14 and may also be applicable to lower energy pure beta-emitting radionuclide, H-3. Although the detection of bremsstrahlung X-rays emitted from H-3 and C-14 may be a possible method for in-vivo imaging of small animals, the absorption of the bremsstrahlung X-rays in the subjects are significant because the energy of bremsstrahlung X-rays is relatively low. In addition, the generations of bremsstrahlung X-rays are lower for low energy beta particles. They may make the in-vivo imaging of these beta radionuclides difficult. To clarify these points for the in-vivo imaging of bremsstrahlung X-rays emitted from H-3 and C-14, we used Monte Carlo simulation to calculate the numbers of counts and the energy spectra of the bremsstrahlung X-rays emitted from H-3 and C-14 in water. The simulation results showed that the fraction of detected bremsstrahlung X-rays by a 4 cm × 4 cm detector in all emitted beta particles was 3.5 × 10-6 at 0.1 mm from the source. Thus, with a 10 M Bq of H-3, we will detect ~35 cps at 0.1 mm from the source so in-vivo imaging at surface area will be possible. For C-14, the fraction of detected bremsstrahlung X-rays by the detector without and with collimator were 7.0 × 10-5 and 1.1 × 10-6 at 10 mm from the source, respectively. Thus, with a 10 M Bq of C-14, we will detect ~700 cps and ~11 cps at 10 mm from the source without and with collimator, respectively. The count rate without collimator is easy to form an image in a short time using a low energy X-ray detector. With collimator, in-vivo imaging of distribution of C-14 will be possible. We conclude that in-vivo imaging of small animals by detecting the bremsstrahlung X-rays emitted from H-3 and C-14 is possible and promising for a new molecular imaging technology.
Collapse
Affiliation(s)
- Kouhei Nakanishi
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Radiology, Akita Hospital, Chiryu, Japan.
| | - Seiichi Yamamoto
- Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
7
|
Spina JC, Hume I, Pelaez A, Peralta O, Quadrelli M, Garcia Monaco R. Expected and Unexpected Imaging Findings after 90Y Transarterial Radioembolization for Liver Tumors. Radiographics 2020; 39:578-595. [PMID: 30844345 DOI: 10.1148/rg.2019180095] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transarterial radioembolization (TARE), also called radioembolization or selective internal radiation therapy, is an interventional radiology technique used to treat primary liver tumors and liver metastases. The aim of this therapy is to deliver tumoricidal doses of radiation to liver tumors while selecting a safe radiation dose limit for nontumoral liver and lung tissue. Hence, correct treatment planning is essential to obtaining good results. However, this treatment invariably results in some degree of irradiation of normal liver parenchyma, inducing different radiologic findings that may affect follow-up image interpretation. When evaluating treatment response, the treated area size, tumor necrosis, devascularization, and changes seen at functional MRI must be taken into account. Unlike with other interventional procedures, with TARE, it can take several months for the tumor response to become evident. Ideally, responding lesions will show reduced size and decreased enhancement 3-6 months after treatment. In addition, during follow-up, there are many imaging findings related to the procedure itself (eg, peritumoral edema, inflammation, ring enhancement, hepatic fibrosis, and capsular retraction) that can make image interpretation and response evaluation difficult. Possible complications, either hepatic or extrahepatic, also can occur and include biliary injuries, hepatic abscess, radioembolization-induced liver disease, and radiation pneumonitis or dermatitis. A complete understanding of these possible posttreatment changes is essential for correct radiologic interpretations during the follow-up of patients who have undergone TARE. ©RSNA, 2019.
Collapse
Affiliation(s)
- Juan C Spina
- From the Departments of Radiology (J.C.S., A.P., O.P., M.Q., R.G.M.) and Nuclear Medicine (I.H.), Hospital Italiano, Tte Gral Juan Domingo Perón 4230, C1199ABH CABA, Buenos Aires, Argentina
| | - Isabel Hume
- From the Departments of Radiology (J.C.S., A.P., O.P., M.Q., R.G.M.) and Nuclear Medicine (I.H.), Hospital Italiano, Tte Gral Juan Domingo Perón 4230, C1199ABH CABA, Buenos Aires, Argentina
| | - Ana Pelaez
- From the Departments of Radiology (J.C.S., A.P., O.P., M.Q., R.G.M.) and Nuclear Medicine (I.H.), Hospital Italiano, Tte Gral Juan Domingo Perón 4230, C1199ABH CABA, Buenos Aires, Argentina
| | - Oscar Peralta
- From the Departments of Radiology (J.C.S., A.P., O.P., M.Q., R.G.M.) and Nuclear Medicine (I.H.), Hospital Italiano, Tte Gral Juan Domingo Perón 4230, C1199ABH CABA, Buenos Aires, Argentina
| | - Marcos Quadrelli
- From the Departments of Radiology (J.C.S., A.P., O.P., M.Q., R.G.M.) and Nuclear Medicine (I.H.), Hospital Italiano, Tte Gral Juan Domingo Perón 4230, C1199ABH CABA, Buenos Aires, Argentina
| | - Ricardo Garcia Monaco
- From the Departments of Radiology (J.C.S., A.P., O.P., M.Q., R.G.M.) and Nuclear Medicine (I.H.), Hospital Italiano, Tte Gral Juan Domingo Perón 4230, C1199ABH CABA, Buenos Aires, Argentina
| |
Collapse
|
8
|
Debebe SA, Adjouadi M, Gulec SA, Franquiz J, McGoron AJ. 90 Y SPECT/CT quantitative study and comparison of uptake with pretreatment 99 m Tc-MAA SPECT/CT in radiomicrosphere therapy. J Appl Clin Med Phys 2019; 20:30-42. [PMID: 30628156 PMCID: PMC6371018 DOI: 10.1002/acm2.12512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/27/2018] [Accepted: 11/18/2018] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Yttrium-90 (90 Y) microsphere post-treatment imaging reflects the true distribution characteristics of microspheres in the tumor and liver compartments. However, due to its decay spectra profile lacking a pronounced photopeak, the bremsstrahlung imaging for 90 Y has inherent limitations. The absorbed dose calculations for 90 Y microspheres radiomicrosphere therapy (RMT) sustain a limitation due to the poor quality of 90 Y imaging. The aim of this study was to develop quantitative methods to improve the post-treatment 90 Y bremsstrahlung single photon emission tomography (SPECT)/computed tomography (CT) image analysis for dosimetric purposes and to perform a quantitative comparison with the 99m Tc-MAA SPECT/CT images, which is used for theranostics purposes for liver and tumor dosimetry. METHODS Pre and post-treatment SPECT/CT data of patients who underwent RMT for primary or metastatic liver cancer were acquired. A Jasczak phantom with eight spherical inserts of various sizes was used to obtain optimal iteration number for the contrast recovery algorithm for improving 90 Y bremsstrahlung SPECT/CT images. Comparison of uptake on 99m Tc-MAA and 90 Y microsphere SPECT/CT images was assessed using tumor to healthy liver ratios (TLRs). The voxel dosimetry technique was used to estimate absorbed doses. Absorbed doses within the tumor and healthy part of the liver were also investigated for correlation with administered activity. RESULTS Improvement in CNR and contrast recovery coefficients on patient and phantom 90 Y bremsstrahlung SPECT/CT images respectively were achieved. The 99m Tc-MAA and 90 Y microspheres SPECT/CT images showed significant uptake correlation (r = 0.9, P = 0.05) with mean TLR of 9.4 ± 9.2 and 5.0 ± 2.2, respectively. The correlation between the administered activity and tumor absorbed dose was weak (r = 0.5, P > 0.05), however, healthy liver absorbed dose increased with administered activity (r = 0.8, P = 0.0). CONCLUSIONS This study demonstrated correlation in mean TLR between 99m Tc-MAA and 90 Y microsphere SPECT/CT.
Collapse
Affiliation(s)
- Senait Aknaw Debebe
- Department of Biomedical EngineeringFlorida International UniversityMiamiFLUSA
| | - Malek Adjouadi
- Department of Electrical and Computer EngineeringFlorida International UniversityMiamiFLUSA
| | - Seza A. Gulec
- Herbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | | | - Anthony J. McGoron
- Department of Biomedical EngineeringFlorida International UniversityMiamiFLUSA
| |
Collapse
|
9
|
Schobert I, Chapiro J, Nezami N, Hamm CA, Gebauer B, Lin M, Pollak J, Saperstein L, Schlachter T, Savic LJ. Quantitative Imaging Biomarkers for 90Y Distribution on Bremsstrahlung SPECT After Resin-Based Radioembolization. J Nucl Med 2019; 60:1066-1072. [PMID: 30655331 DOI: 10.2967/jnumed.118.219691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022] Open
Abstract
Our purpose was to identify baseline imaging features in patients with liver cancer that correlate with 90Y distribution on postprocedural SPECT and predict tumor response to transarterial radioembolization (TARE). Methods: This retrospective study was approved by the institutional review board and included 38 patients with hepatocellular carcinoma (HCC) (n = 23; 18/23 men; mean age, 62.39 ± 8.62 y; 34 dominant tumors) and non-HCC hepatic malignancies (n = 15; 9/15 men; mean age, 61.13 ± 11.51 y; 24 dominant tumors) who underwent 40 resin-based TARE treatments (August 2012 to January 2018). Multiphasic contrast-enhanced MRI or CT was obtained before and Bremsstrahlung SPECT within 2 h after TARE. Total tumor volume (cm3) and enhancing tumor volume (ETV [cm3] and % of total tumor volume), and total and enhancing tumor burden (%), were volumetrically assessed on baseline imaging. Up to 2 dominant tumors per treated lobe were analyzed. After multimodal image registration of baseline imaging and SPECT/CT, 90Y distribution was quantified on SPECT as tumor-to-normal-liver ratio (TNR). Response was assessed according to RECIST1.1 and quantitative European Association for the Study of the Liver criteria. Clinical parameters were also assessed. Statistical tests included Mann-Whitney U, Pearson correlation, and linear regression. Results: In HCC patients, high baseline ETV% significantly correlated with high TNR on SPECT, demonstrating greater 90Y uptake in the tumor relative to the liver parenchyma (P < 0.001). In non-HCC patients, a correlation between ETV% and TNR was observed as well (P = 0.039). Follow-up imaging for response assessments within 1-4 mo after TARE was available for 23 patients with 25 treatments. The change of ETV% significantly correlated with TNR in HCC (P = 0.039) but not in non-HCC patients (P = 0.886). Additionally, Child-Pugh class B patients demonstrated significantly more 90Y deposition in nontumorous liver than Child-Pugh A patients (P = 0.021). Conclusion: This study identified ETV% as a quantifiable imaging biomarker on preprocedural MRI and CT to predict 90Y distribution on postprocedural SPECT in HCC and non-HCC. However, the relationship between the preferential uptake of 90Y to the tumor and tumor response after radioembolization could be validated only for HCC.
Collapse
Affiliation(s)
- Isabel Schobert
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany; and
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Nariman Nezami
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Charlie A Hamm
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany; and
| | - Bernhard Gebauer
- Institute of Radiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany; and
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Visage Imaging Inc., San Diego, California
| | - Jeffrey Pollak
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Lawrence Saperstein
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Todd Schlachter
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Lynn J Savic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany; and
| |
Collapse
|
10
|
Ahmadzadehfar H, Muckle M, Sabet A, Wilhelm K, Kuhl C, Biermann K, Haslerud T, Biersack HJ, Ezziddin S. The significance of bremsstrahlung SPECT/CT after yttrium-90 radioembolization treatment in the prediction of extrahepatic side effects. Eur J Nucl Med Mol Imaging 2016; 39:309-15. [PMID: 21975832 DOI: 10.1007/s00259-011-1940-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/09/2011] [Indexed: 01/06/2023]
Abstract
Purpose Unwanted deposition of 90Y microspheres in organs other than the liver during radioembolization of liver tumours may cause severe side effects such as duodenal ulcer. The aim of this study was to evaluate the significance of posttherapy bremsstrahlung (BS) SPECT/CT images of the liver in comparison to planar and SPECT images in the prediction of radioembolization-induced extrahepatic side effects.Methods A total of 188 radioembolization procedures were performed in 123 patients (50 women, 73 men) over a 2-year period. Planar, whole-body and BS SPECT/CT imaging were performed 24 h after treatment as a part of therapy work-up.Any focally increased extrahepatic accumulation was evaluated as suspicious. Clinical follow-up and gastroduodenoscopy served as reference standards. The studies were reviewed to evaluate whether BS SPECT/CT imaging was of benefit.Results In the light of anatomic data obtained from SPECT/CT, apparent extrahepatic BS in 43% of planar and in 52% of SPECT images proved to be in the liver and hence false positive.The results of planar scintigraphy could not be analysed further since 12 images were not assessable due to high scatter artefacts. On the basis of the gastrointestinal (GI)complications and the results of gastroduodenoscopy, true positive,true-negative, false-positive and false-negative results of BS SPECT and SPECT/CT imaging in the prediction of GI ulcers were determined. The sensitivity, specificity, positive and negative predictive values and the accuracy of SPECT and SPECT/CT in the prediction of GI ulcers were 13%, 88%, 8%,92% and 82%, and 87%, 100%, 100%, 99% and 99%,respectively.Conclusion Despite the low quality of BS images, BSSPECT/CT can be used as a reliable method to confirm the safe distribution of 90Y microspheres and in the prediction of GI side effects.
Collapse
|
11
|
Uribe CF, Esquinas PL, Gonzalez M, Celler A. Characteristics of Bremsstrahlung emissions of (177)Lu, (188)Re, and (90)Y for SPECT/CT quantification in radionuclide therapy. Phys Med 2016; 32:691-700. [PMID: 27157626 DOI: 10.1016/j.ejmp.2016.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Beta particles emitted by radioisotopes used in targeted radionuclide therapies (TRT) create Bremsstrahlung (BRS) which may affect SPECT quantification when imaging these isotopes. The purpose of the current study was to investigate the characteristics of Bremsstrahlung produced in tissue by three β-emitting radioisotopes used in TRT. METHODS Monte Carlo simulations of (177)Lu, (188)Re, and (90)Y sources placed in water filled cylinders were performed. BRS yields, mean energies and energy spectra for (a) all photons generated in the decays, (b) photons that were not absorbed and leave the cylinder, and (c) photons detected by the camera were analyzed. Next, the results of simulations were compared with those from experiments performed on a clinical SPECT camera using same acquisition conditions and phantom configurations as in simulations. RESULTS Simulations reproduced relatively well the shapes of the measured spectra, except for (90)Y which showed an overestimation in the low energy range. Detailed analysis of the results allowed us to suggest best collimators and imaging conditions for each of the investigated isotopes. Finally, our simulations confirmed that the BRS contribution to the energy spectra in quantitative imaging of (177)Lu and (188)Re could be ignored. CONCLUSIONS For (177)Lu and (188)Re, BRS contributes only marginally to the total spectra recorded by the camera. Our analysis shows that MELP and HE collimators are the best for imaging these two isotopes. For (90)Y, HE collimator should be used.
Collapse
Affiliation(s)
- Carlos F Uribe
- Medical Imaging Research Group, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Pedro L Esquinas
- Medical Imaging Research Group, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marjorie Gonzalez
- Vancouver Coastal Health Authority, Vancouver, British Columbia, Canada
| | - Anna Celler
- Medical Imaging Research Group, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Roshan HR, Mahmoudian B, Gharepapagh E, Azarm A, Pirayesh Islamian J. Collimator and energy window optimization for ⁹⁰Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study. Appl Radiat Isot 2016; 108:124-128. [PMID: 26720261 DOI: 10.1016/j.apradiso.2015.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/19/2015] [Accepted: 12/14/2015] [Indexed: 11/25/2022]
Abstract
Treatment efficacy of radioembolization using Yttrium-90 ((90)Y) microspheres is assessed by the (90)Y bremsstrahlung single photon emission computed tomography (SPECT) imaging following radioembolization. The radioisotopic image has the potential of providing reliable activity map of (90)Y microspheres distribution. One of the main reasons of the poor image quality in (90)Y bremsstrahlung SPECT imaging is the continuous and broad energy spectrum of the related bremsstrahlung photons. Furthermore, collimator geometry plays an impressive role in the spatial resolution, sensitivity and image contrast. Due to the relatively poor quality of the (90)Y bremsstrahlung SPECT images, we intend to optimize the medium-energy (ME) parallel-hole collimator and energy window. The Siemens e.cam gamma camera equipped with a ME collimator and a voxelized phantom was simulated by the SImulating Medical Imaging Nuclear Detectors (SIMIND) program. We used the SIMIND Monte Carlo program to generate the (90)Y bremsstrahlung SPECT projection of the digital Jaszczak phantom. The phantom consist of the six hot spheres ranging from 9.5 to 31.8mm in diameter, which are used to evaluate the image contrast. In order to assess the effect of the energy window on the image contrast, three energy windows ranging from 60 to 160 KeV, 160 to 400 KeV, and 60 to 400 KeV were set on a (90)Y bremsstrahlung spectrum. As well, the effect of the hole diameter of a ME collimator on the image contrast and bremsstrahlung spectrum were investigated. For the fixed collimator and septa thickness values (3.28 cm and 1.14 mm, respectively), a hole diameter range (2.35-3.3mm) was chosen based on the appropriate balance between the spatial resolution and sensitivity. The optimal energy window for (90)Y bremsstrahlung SPECT imaging was extended energy window from 60 to 400 KeV. Besides, The optimal value of the hole diameter of ME collimator was obtained 3.3mm. Geometry of the ME parallel-hole collimator and energy window are indeed important indicators of the image quality in (90)Y bremsstrahlung imaging. The obtained optimal ME collimator and optimal energy window have the potential to improve the image contrast of (90)Y bremsstrahlung images. Subsequently, high quality (90)Y bremsstrahlung images can provide reliable estimate of the (90)Y microsphere activity distribution after radioembolization.
Collapse
Affiliation(s)
- Hoda Rezaei Roshan
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Mahmoudian
- Department of Radiology, Radiotherapy and Nuclear Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Gharepapagh
- Department of Radiology, Radiotherapy and Nuclear Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmadreza Azarm
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalil Pirayesh Islamian
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Takahashi A, Himuro K, Yamashita Y, Komiya I, Baba S, Sasaki M. Monte Carlo simulation of PET and SPECT imaging of 90Y. Med Phys 2015; 42:1926-35. [PMID: 25832083 DOI: 10.1118/1.4915545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Yittrium-90 ((90)Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because (90)Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of (90)Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation-reconstruction framework for (90)Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitatively consider the disadvantages associated with them. METHODS Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of (18)F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded (90)Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of (90)Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. RESULTS The simulated (90)Y-PET image accurately simulated the experimental results. PET image is visually superior to SPECT image because of the low background noise. The simulation reveals that the detected photon number in SPECT is comparable to that of PET, but the large fraction (approximately 75%) of scattered and penetration photons contaminates SPECT image. The lower limit of (90)Y detection in SPECT image was approximately 200 kBq/ml, while that in PET image was approximately 100 kBq/ml. CONCLUSIONS By comparing the background noise level and the image concentration profile of both the techniques, PET image quality was determined to be superior to that of bremsstrahlung SPECT. The developed simulation codes will be very useful in the future investigations of PET and bremsstrahlung SPECT imaging of (90)Y.
Collapse
Affiliation(s)
- Akihiko Takahashi
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuhiko Himuro
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuo Yamashita
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Isao Komiya
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shingo Baba
- Department of Clinical Radiology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masayuki Sasaki
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
14
|
Roshan HR, Azarm A, Mahmoudian B, Islamian JP. Advances in SPECT for Optimizing the Liver Tumors Radioembolization Using Yttrium-90 Microspheres. World J Nucl Med 2015; 14:75-80. [PMID: 26097416 PMCID: PMC4455176 DOI: 10.4103/1450-1147.157120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Radioembolization (RE) with Yttrium-90 ((90)Y) microspheres is an effective treatment for unresectable liver tumors. The activity of the microspheres to be administered should be calculated based on the type of microspheres. Technetium-99m macroaggregated albumin ((99m)Tc-MAA) single photon emission computed tomography/computed tomography (SPECT/CT) is a reliable assessment before RE to ensure the safe delivery of microspheres into the target. (90)Y bremsstrahlung SPECT imaging as a posttherapeutic assessment approach enables the reliable determination of absorbed dose, which is indispensable for the verification of treatment efficacy. This article intends to provide a review of the methods of optimizing (90)Y bremsstrahlung SPECT imaging to improve the treatment efficacy of liver tumor RE using (90)Y microspheres.
Collapse
Affiliation(s)
- Hoda Rezaei Roshan
- Department of Medical Physics, Nuclear Medicine Unit, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmadreza Azarm
- Department of Medical Physics, Nuclear Medicine Unit, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Mahmoudian
- Department of Radiology, Nuclear Medicine Unit, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalil Pirayesh Islamian
- Department of Medical Physics, Nuclear Medicine Unit, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Theranostic Imaging of Yttrium-90. BIOMED RESEARCH INTERNATIONAL 2015; 2015:481279. [PMID: 26106608 PMCID: PMC4464848 DOI: 10.1155/2015/481279] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 04/22/2015] [Indexed: 01/07/2023]
Abstract
This paper overviews Yttrium-90 ((90)Y) as a theranostic and nuclear medicine imaging of (90)Y radioactivity with bremsstrahlung imaging and positron emission tomography. In addition, detection and optical imaging of (90)Y radioactivity using Cerenkov luminescence will also be reviewed. Methods and approaches for qualitative and quantitative (90)Y imaging will be briefly discussed. Although challenges remain for (90)Y imaging, continued clinical demand for predictive imaging response assessment and target/nontarget dosimetry will drive research and technical innovation to provide greater clinical utility of (90)Y as a theranostic agent.
Collapse
|
16
|
Chalkia MT, Stefanoyiannis AP, Chatziioannou SN, Round WH, Efstathopoulos EP, Nikiforidis GC. Patient-specific dosimetry in peptide receptor radionuclide therapy: a clinical review. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2014; 38:7-22. [PMID: 25427548 DOI: 10.1007/s13246-014-0312-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/06/2014] [Indexed: 12/16/2022]
Abstract
Neuroendocrine tumours (NETs) belong to a relatively rare class of neoplasms. Nonetheless, their prevalence has increased significantly during the last decades. Peptide receptor radionuclide therapy (PRRT) is a relatively new treatment approach for inoperable or metastasised NETs. The therapeutic effect is based on the binding of radiolabelled somatostatin analogue peptides with NETs' somatostatin receptors, resulting in internal irradiation of tumours. Pre-therapeutic patient-specific dosimetry is essential to ensure that a treatment course has high levels of safety and efficacy. This paper reviews the methods applied for PRRT dosimetry, as well as the dosimetric results presented in the literature. Focus is given on data concerning the therapeutic somatostatin analogue radiopeptides (111)In-[DTPA(0),D-Phe(1)]-octreotide ((111)In-DTPA-octreotide), (90)Y-[DOTA(0),Tyr(3)]-octreotide ((90)Y-DOTATOC) and (177)Lu-[DOTA(0),Tyr(3),Thr(8)]-octreotide ((177)Lu-DOTATATE). Following the Medical Internal Radiation Dose (MIRD) Committee formalism, dosimetric analysis demonstrates large interpatient variability in tumour and organ uptake, with kidneys and bone marrow being the critical organs. The results are dependent on the image acquisition and processing protocol, as well as the dosimetric imaging radiopharmaceutical.
Collapse
Affiliation(s)
- M T Chalkia
- University General Hospital of Athens "Attikon", 1, Rimini Street, Chaidari, 12462, Athens, Greece
| | | | | | | | | | | |
Collapse
|
17
|
Pirayesh E, Amoui M, Akhlaghpoor S, Tolooee S, Khorrami M, PoorBeigi H, Sheibani S, Assadi M. Technical Considerations of Phosphorous-32 Bremsstrahlung SPECT Imaging after Radioembolization of Hepatic Tumors: A Clinical Assessment with a Review of Imaging Parameters. Radiol Res Pract 2014; 2014:407158. [PMID: 24800073 PMCID: PMC3985385 DOI: 10.1155/2014/407158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/15/2014] [Accepted: 02/19/2014] [Indexed: 12/12/2022] Open
Abstract
Background. Bremsstrahlung (BS) imaging during radioembolization (RE) confirms the deposition of radiotracer in hepatic/extrahepatic tumors. The aim of this study is to demonstrate (32)P images and to optimize the imaging parameters. Materials and Methods. Thirty-nine patients with variable types of hepatic tumors, treated with the intra-arterial injection of (32)P, were included. All patients underwent BS SPECT imaging 24-72 h after tracer administration, using low energy high resolution (LEHR) (18 patients) or medium energy general purpose (MEGP) (21 patients) collimators. A grading scale from 1 to 4 was used to express the compatibility of the (32)P images with those obtained from CT/MRI. Results. Although the image quality obtained with the MEGP collimator was visually and quantitatively better than with the LEHR (76% concordance score versus 71%, resp.), there was no statistically significant difference between them. Conclusion. The MEGP collimator is the first choice for BS SPECT imaging. However, if the collimator change is time consuming (as in a busy center) or an MEGP collimator is not available, the LEHR collimator could be practical with acceptable images, especially in a SPECT study. In addition, BS imaging is a useful method to confirm the proper distribution of radiotherapeutic agents and has good correlation with anatomical findings.
Collapse
Affiliation(s)
- Elahe Pirayesh
- Department of Nuclear Medicine, Shohada-e-Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahasti Amoui
- Department of Nuclear Medicine, Shohada-e-Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Akhlaghpoor
- Department of Interventional Radiology, Noor Medical Imaging Center, Tehran, Iran
| | - Shahnaz Tolooee
- Department of Nuclear Sciences, Iranian Atomic Energy Organization, Tehran, Iran
| | - Maryam Khorrami
- Department of Nuclear Medicine, Shohada-e-Tajrish Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossain PoorBeigi
- Department of Nuclear Sciences, Iranian Atomic Energy Organization, Tehran, Iran
| | - Shahab Sheibani
- Department of Nuclear Sciences, Iranian Atomic Energy Organization, Tehran, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
18
|
Ahmadzadehfar H, Duan H, Haug AR, Walrand S, Hoffmann M. The role of SPECT/CT in radioembolization of liver tumours. Eur J Nucl Med Mol Imaging 2014; 41 Suppl 1:S115-24. [PMID: 24442600 DOI: 10.1007/s00259-013-2675-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 01/14/2023]
Abstract
Radioembolization (RE) with (90)Y microspheres is a promising catheter-based therapeutic option for patients with unresectable primary and metastatic liver tumours. Its rationale arises from the dual blood supply of liver tissue through the hepatic artery and the portal vein. Metastatic hepatic tumours measuring >3 mm derive 80 - 100 % of their blood supply from the arterial rather than the portal hepatic circulation. Typically, an angiographic evaluation combined with (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) scan precedes therapy to map the tumour feeding vessels as well as to avoid the inadvertent deposition of microspheres in organs other than the liver. Prior to administration of (99m)Tc-MAA, prophylactic coil embolization of the gastroduodenal artery is recommended to avoid extrahepatic deposition of the microspheres. SPECT/CT allows direct correlation of anatomic and functional information in patients with unresectable liver disease. SPECT/CT is recommended to assess intrahepatic distribution as well as extrahepatic gastrointestinal uptake in these patients. Pretherapeutic SPECT/CT is an important component of treatment planning including catheter positioning and dose finding. A post-therapy bremsstrahlung (BS) scan should follow RE to verify the distribution of the administered tracer. BS SPECT/CT imaging enables better localization and definition of intrahepatic and possible extrahepatic sphere distribution and to a certain degree allows posttreatment dosimetry. In this paper we address the usefulness and significance of SPECT/CT in therapy planning and therapy monitoring of RE.
Collapse
|
19
|
Ota S, Uno M, Kato M, Ishiguro M, Natsume T, Kikukawa K, Tadokoro M, Ichihara T, Toyama H. 89Sr bremsstrahlung single photon emission computed tomography using a gamma camera for bone metastases. Ann Nucl Med 2013; 28:112-9. [DOI: 10.1007/s12149-013-0788-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/03/2013] [Indexed: 10/26/2022]
|
20
|
Abstract
Personalized dosimetry in radionuclide therapy has gained much attention in recent years. This attention has also an impact on peptide receptor radionuclide therapy (PRRT). This article reviews the PET-based imaging techniques that can be used for pretherapeutic prediction of doses in PRRT. More specifically the usage of (86)Y, (90)Y, (68)Ga, and (44)Sc are discussed: their characteristics for PET acquisition, the available peptides for labeling, the specifics of the imaging protocols, and the experiences gained from phantom and clinical studies. These techniques are evaluated with regard to their usefulness for dosimetry predictions in PRRT, and future perspectives are discussed.
Collapse
|
21
|
Kao YH, Steinberg JD, Tay YS, Lim GK, Yan J, Townsend DW, Takano A, Burgmans MC, Irani FG, Teo TK, Yeow TN, Gogna A, Lo RH, Tay KH, Tan BS, Chow PK, Satchithanantham S, Tan AE, Ng DC, Goh AS. Post-radioembolization yttrium-90 PET/CT - part 1: diagnostic reporting. EJNMMI Res 2013; 3:56. [PMID: 23883566 PMCID: PMC3726297 DOI: 10.1186/2191-219x-3-56] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/16/2013] [Indexed: 11/15/2022] Open
Abstract
Background Yttrium-90 (90Y) positron emission tomography with integrated computed tomography (PET/CT) represents a technological leap from 90Y bremsstrahlung single-photon emission computed tomography with integrated computed tomography (SPECT/CT) by coincidence imaging of low abundance internal pair production. Encouraged by favorable early experiences, we implemented post-radioembolization 90Y PET/CT as an adjunct to 90Y bremsstrahlung SPECT/CT in diagnostic reporting. Methods This is a retrospective review of all paired 90Y PET/CT and 90Y bremsstrahlung SPECT/CT scans over a 1-year period. We compared image resolution, ability to confirm technical success, detection of non-target activity, and providing conclusive information about 90Y activity within targeted tumor vascular thrombosis. 90Y resin microspheres were used. 90Y PET/CT was performed on a conventional time-of-flight lutetium-yttrium-oxyorthosilicate scanner with minor modifications to acquisition and reconstruction parameters. Specific findings on 90Y PET/CT were corroborated by 90Y bremsstrahlung SPECT/CT, 99mTc macroaggregated albumin SPECT/CT, follow-up diagnostic imaging or review of clinical records. Results Diagnostic reporting recommendations were developed from our collective experience across 44 paired scans. Emphasis on the continuity of care improved overall diagnostic accuracy and reporting confidence of the operator. With proper technique, the presence of background noise did not pose a problem for diagnostic reporting. A counter-intuitive but effective technique of detecting non-target activity is proposed, based on the pattern of activity and its relation to underlying anatomy, instead of its visual intensity. In a sub-analysis of 23 patients with a median follow-up of 5.4 months, 90Y PET/CT consistently outperformed 90Y bremsstrahlung SPECT/CT in all aspects of qualitative analysis, including assessment for non-target activity and tumor vascular thrombosis. Parts of viscera closely adjacent to the liver remain challenging for non-target activity detection, compounded by a tendency for mis-registration. Conclusions Adherence to proper diagnostic reporting technique and emphasis on continuity of care are vital to the clinical utility of post-radioembolization 90Y PET/CT. 90Y PET/CT is superior to 90Y bremsstrahlung SPECT/CT for the assessment of target and non-target activity.
Collapse
Affiliation(s)
- Yung-Hsiang Kao
- Department of Nuclear Medicine and PET, Singapore General Hospital, Outram Road, Singapore 169608, Singapore.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS One 2013; 8:e55742. [PMID: 23405207 PMCID: PMC3566032 DOI: 10.1371/journal.pone.0055742] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/30/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND After yttrium-90 ((90)Y) microsphere radioembolization (RE), evaluation of extrahepatic activity and liver dosimetry is typically performed on (90)Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, (90)Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of (90)Y and on the accuracy of liver dosimetry. METHODOLOGY/PRINCIPAL FINDINGS SPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF) PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere) to 11% (37-mm sphere) for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data. CONCLUSIONS/SIGNIFICANCE In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the assessment of the (90)Y microsphere distribution after radioembolization.
Collapse
|
23
|
Bakht MK, Jabal-Ameli H, Ahmadi SJ, Sadeghi M, Sadjadi S, Tenreiro C. Bremsstrahlung parameters of praseodymium-142 in different human tissues: a dosimetric perspective for (142)Pr radionuclide therapy. Ann Nucl Med 2012; 26:412-8. [PMID: 22528970 DOI: 10.1007/s12149-012-0591-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Praseodymium-142 [T 1/2 = 19.12 h, [Formula: see text] = 2.162 MeV (96.3%), Eγ = 1575 keV (3.7%)] is one of the (141)Pr radioisotopes. Many studies have been attempted to assess the significance of usage (142)Pr in radionuclide therapy. In many studies, the dosimetric parameters of (142)Pr sources were calculated by modeling (142)Pr sources in the water phantom and scoring the energy deposited around it. However, the medical dosimetry calculations in water phantom consider Bremsstrahlung production, raising the question: "How important is to simulate human tissues instead of using water phantom?" This study answers these questions by estimation of (142)Pr Bremsstrahlung parameters. METHODS The Bremsstrahlung parameters of (142)Pr as therapeutic beta nuclides in different human tissues (adipose, blood, brain, breast, cell nucleus, eye lens, gastrointestinal tract, heart, kidney, liver, lung deflated, lymph, muscle, ovary, pancreas, cartilage, red marrow, spongiosa, yellow marrow, skin, spleen, testis, thyroid and different skeleton bones) were calculated by extending the national council for radiation protection model. The specific Bremsstrahlung constant (Γ Br), probability of energy loss by beta during Bremsstrahlung emission (P Br) and Bremsstrahlung activity (A release)Br were estimated. It should be mentioned that Monte Carlo simulation was used for estimation of (142)Pr Bremsstrahlung activity based on the element compositions of different human tissues and the calculated exposures from the anthropomorphic phantoms. RESULTS Γ Br for yellow marrow was smallest amount (1.1962 × 10(-3) C/kg-cm(2)/MBq-h) compared to the other tissues and highest for cortical bone (2.4764 × 10(-3) C/kg-cm(2)/MBq-h), and, overall, Γ Br for skeletal tissues were greater than other tissues. In addition, Γ Br breast was 1.8261 × 10(-3) C/kg-cm(2)/MBq-h which was greater than sacrum and spongiosa bones. Moreover, according to (A release)Br of (142)Pr, the patients receiving (142)Pr do not have to be hospitalized for radiation precautions and the Bremsstrahlung production does not prevent the therapy for outpatients. CONCLUSION However, modeling (142)Pr source in water phantom for simulation of (142)Pr source in soft tissues could be acceptable due to similarity of Γ Br in water and soft tissues; this approximation is a gross computation in the mediums encompassing high atomic numbers. These data may be practical in the investigation of Bremsstrahlung absorbed dose where (142)Pr is involved in radionuclide therapy.
Collapse
Affiliation(s)
- Mohamadreza K Bakht
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran,
| | | | | | | | | | | |
Collapse
|
24
|
Radioembolisation mit 90Y-markierten Mikrosphären: Posttherapeutische Therapievalidierung mit Bremsstrahlungs-SPECT. Z Med Phys 2011; 21:274-80. [DOI: 10.1016/j.zemedi.2011.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 11/19/2022]
|
25
|
Elschot M, Nijsen JFW, Dam AJ, de Jong HWAM. Quantitative evaluation of scintillation camera imaging characteristics of isotopes used in liver radioembolization. PLoS One 2011; 6:e26174. [PMID: 22073149 PMCID: PMC3207835 DOI: 10.1371/journal.pone.0026174] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/21/2011] [Indexed: 02/07/2023] Open
Abstract
Background Scintillation camera imaging is used for treatment planning and post-treatment dosimetry in liver radioembolization (RE). In yttrium-90 (90Y) RE, scintigraphic images of technetium-99m (99mTc) are used for treatment planning, while 90Y Bremsstrahlung images are used for post-treatment dosimetry. In holmium-166 (166Ho) RE, scintigraphic images of 166Ho can be used for both treatment planning and post-treatment dosimetry. The aim of this study is to quantitatively evaluate and compare the imaging characteristics of these three isotopes, in order that imaging protocols can be optimized and RE studies with varying isotopes can be compared. Methodology/Principal Findings Phantom experiments were performed in line with NEMA guidelines to assess the spatial resolution, sensitivity, count rate linearity, and contrast recovery of 99mTc, 90Y and 166Ho. In addition, Monte Carlo simulations were performed to obtain detailed information about the history of detected photons. The results showed that the use of a broad energy window and the high-energy collimator gave optimal combination of sensitivity, spatial resolution, and primary photon fraction for 90Y Bremsstrahlung imaging, although differences with the medium-energy collimator were small. For 166Ho, the high-energy collimator also slightly outperformed the medium-energy collimator. In comparison with 99mTc, the image quality of both 90Y and 166Ho is degraded by a lower spatial resolution, a lower sensitivity, and larger scatter and collimator penetration fractions. Conclusions/Significance The quantitative evaluation of the scintillation camera characteristics presented in this study helps to optimize acquisition parameters and supports future analysis of clinical comparisons between RE studies.
Collapse
Affiliation(s)
- Mattijs Elschot
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
26
|
Walrand S, Flux GD, Konijnenberg MW, Valkema R, Krenning EP, Lhommel R, Pauwels S, Jamar F. Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging? Eur J Nucl Med Mol Imaging 2011; 38 Suppl 1:S57-68. [DOI: 10.1007/s00259-011-1771-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 02/22/2011] [Indexed: 12/31/2022]
|