1
|
Manabe O, Aikawa T, Naya M, Miura S, Oyama-Manabe N. Functional Assessment of Coronary Artery Disease by Myocardial Flow Reserve Versus Pressure-wire Based Assessment. ANNALS OF NUCLEAR CARDIOLOGY 2021; 7:57-62. [PMID: 36994131 PMCID: PMC10040938 DOI: 10.17996/anc.21-00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 11/19/2022]
Abstract
Positron emission tomography (PET) permits the noninvasive quantification of myocardial blood flow (MBF). Myocardial flow reserve (MFR), calculated by dividing stress MBF by rest MBF is a reliable index for the functional information of coronary artery disease. A pressure-derived physiological index, such as fractional flow reserve (FFR) is also an important measurement. Both MFR and FFR values are used to evaluate coronary physiology; however, but they are not interchangeable because each test has certain discrepancies. In this systematic review, we provide an overview of coronary physiology with PET compared to pressure-derived physiological indices.
Collapse
Affiliation(s)
- Osamu Manabe
- Department of Radiology, Jichi Medical University Saitama Medical Center
| | - Tadao Aikawa
- Department of Radiology, Jichi Medical University Saitama Medical Center
| | - Masanao Naya
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
| | - Shiro Miura
- Department of Cardiology, Hokkaido Ohno Memorial Hospital
| | | |
Collapse
|
2
|
Banerjee RK, Ramadurai S, Manegaonkar SM, Rao MB, Rakkimuthu S, Effat MA. Comparison Between 5- and 1-Year Outcomes Using Cutoff Values of Pressure Drop Coefficient and Fractional Flow Reserve for Diagnosing Coronary Artery Diseases. Front Physiol 2021; 12:689517. [PMID: 34335296 PMCID: PMC8317064 DOI: 10.3389/fphys.2021.689517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/28/2021] [Indexed: 12/02/2022] Open
Abstract
Background The current pressure-based coronary diagnostic index, fractional flow reserve (FFR), has a limited efficacy in the presence of microvascular disease (MVD). To overcome the limitations of FFR, the objective is to assess the recently introduced pressure drop coefficient (CDP), a fundamental fluid dynamics-based combined pressure–flow index. Methods We hypothesize that CDP will result in improved clinical outcomes in comparison to FFR. To test the hypothesis, chi-square test was performed to compare the percent major adverse cardiac events (%MACE) at 5 years between (a) FFR < 0.75 and CDP > 27.9 and (b) FFR < 0.80 and CDP > 25.4 groups using a prospective cohort study. Furthermore, Kaplan–Meier survival curves were compared between the FFR and CDP groups. The results were considered statistically significant for p < 0.05. The outcomes of the CDP arm were presumptive as clinical decision was solely based on the FFR. Results For the complete patient group, the %MACE in the CDP > 27.9 group (10 out of 35, 29%) was lower in comparison to the FFR < 0.75 group (11 out of 20, 55%), and the difference was near significant (p = 0.05). The survival analysis showed a significantly higher survival rate (p = 0.01) in the CDP > 27.9 group (n = 35) when compared to the FFR < 0.75 group (n = 20). The results remained similar for the FFR = 0.80 cutoff. The comparison of the 5-year MACE outcomes with the 1-year outcomes for the complete patient group showed similar trends, with a higher statistical significance for a longer follow-up period of 5 years. Conclusion Based on the MACE and survival analysis outcomes, CDP could possibly be an alternate diagnostic index for decision-making in the cardiac catheterization laboratory. Clinical Trial Registration www.ClinicalTrials.gov, identifier NCT01719016.
Collapse
Affiliation(s)
- Rupak K Banerjee
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, United States.,Research Services, Veteran Affairs Medical Services, Cincinnati, OH, United States
| | - Sruthi Ramadurai
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Shreyash M Manegaonkar
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Marepalli B Rao
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Sathyaprabha Rakkimuthu
- Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Mohamed A Effat
- Department of Cardiology, University of Cincinnati Medical Center, Cincinnati, OH, United States
| |
Collapse
|
3
|
Cho SG, Lee SJ, Na MH, Choi YY, Bom HHS. Comparison of diagnostic accuracy of PET-derived myocardial blood flow parameters: A meta-analysis. J Nucl Cardiol 2020; 27:1955-1966. [PMID: 30390243 DOI: 10.1007/s12350-018-01476-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/24/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although absolute quantification of myocardial blood flow (MBF) by positron emission tomography provides additive diagnostic value to visual analysis of perfusion defect, diagnostic accuracy of different MBF parameters remain unclear. METHODS Clinical studies regarding the diagnostic accuracy of hyperemic MBF (hMBF), myocardial flow reserve (MFR) and/or relative flow reserve (RFR) were searched and systematically reviewed. On a per-vessel basis, pooled measures of the parameters' diagnostic performances were analyzed, regarding significant coronary stenosis defined by fractional flow reserve or diameter stenosis. RESULTS Ten studies (2,522 arteries from 1,099 patients) were finally included. Pooled sensitivity [95% confidence interval (CI)] was 0.853 (0.821-0.881) for hMBF, 0.755 (0.713-0.794) for MFR, and 0.636 (0.539-0.726) for RFR. Pooled specificity (95% CI) was 0.844 (0.827-0.860) for hMBF, 0.804 (0.784-0.824) for MFR, and 0.897 (0.860-0.926) for RFR. Pooled area under the curve ± standard error was 0.900 ± 0.020 for hMBF, 0.830 ± 0.026 for MFR, and 0.873 ± 0.048 for RFR. CONCLUSIONS hMBF showed the best sensitivity while RFR showed the best specificity in the diagnosis of significant coronary stenosis. MFR was less sensitive than hMBF and less specific than hMBF and RFR.
Collapse
Affiliation(s)
- Sang-Geon Cho
- Department of Nuclear Medicine, Chonnam National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea.
| | - Soo Jin Lee
- Department of Nuclear Medicine, Hanyang University Medical Center, 222-1, Wangsimni-ro Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Myung Hwan Na
- Department of Statistics, Chonnam National University, 45, Yongbong-ro, Buk-gu, Kwangju, 61186, Republic of Korea
| | - Yun Young Choi
- Department of Nuclear Medicine, Hanyang University Medical Center, 222-1, Wangsimni-ro Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Henry Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 322, Seoyang-ro Hwasun-eup, Hwasun-gun, Jeonnam, 58128, Republic of Korea.
| |
Collapse
|
4
|
Quantificação do fluxo sanguíneo miocárdico por tomografia por emissão de positrões – Atualização. Rev Port Cardiol 2020; 39:37-46. [DOI: 10.1016/j.repc.2019.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/03/2019] [Accepted: 05/05/2019] [Indexed: 10/24/2022] Open
|
5
|
Fernandes J, Ferreira MJ, Leite L. Update on myocardial blood flow quantification by positron emission tomography. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.repce.2020.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Peelukhana SV, Banerjee RK, van de Hoef TP, Kolli KK, Effat M, Helmy T, Leesar M, Kerr H, Piek JJ, Succop P, Back L, Arif I. Evaluation of lesion flow coefficient for the detection of coronary artery disease in patient groups from two academic medical centers. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2018; 19:348-354. [DOI: 10.1016/j.carrev.2017.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/30/2017] [Indexed: 01/09/2023]
|
7
|
Murthy VL, Bateman TM, Beanlands RS, Berman DS, Borges-Neto S, Chareonthaitawee P, Cerqueira MD, deKemp RA, DePuey EG, Dilsizian V, Dorbala S, Ficaro EP, Garcia EV, Gewirtz H, Heller GV, Lewin HC, Malhotra S, Mann A, Ruddy TD, Schindler TH, Schwartz RG, Slomka PJ, Soman P, Di Carli MF, Einstein A, Russell R, Corbett JR. Clinical Quantification of Myocardial Blood Flow Using PET: Joint Position Paper of the SNMMI Cardiovascular Council and the ASNC. J Nucl Cardiol 2018; 25:269-297. [PMID: 29243073 DOI: 10.1007/s12350-017-1110-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Venkatesh L Murthy
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| | | | - Rob S Beanlands
- National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Daniel S Berman
- Departments of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Salvador Borges-Neto
- Division of Nuclear Medicine, Department of Radiology, and Division of Cardiology, Department of Medicine, Duke University School of Medicine, Duke University Health System, Durham, NC, USA
| | | | | | - Robert A deKemp
- National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - E Gordon DePuey
- Division of Nuclear Medicine, Department of Radiology, Mt. Sinai St. Luke's and Mt. Sinai West Hospitals, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharmila Dorbala
- Cardiovascular Imaging Program, Brigham and Women's Hospital, Boston, MA, USA
| | - Edward P Ficaro
- Division of Nuclear Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ernest V Garcia
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Henry Gewirtz
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gary V Heller
- Gagnon Cardiovascular Institute, Morristown Medical Center, Morristown, NJ, USA
| | | | - Saurabh Malhotra
- Division of Cardiovascular Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | | | - Terrence D Ruddy
- National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Thomas H Schindler
- Division of Nuclear Medicine, Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ronald G Schwartz
- Cardiology Division, Department of Medicine, and Nuclear Medicine Division, Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Piotr J Slomka
- Departments of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Prem Soman
- Division of Cardiology, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Marcelo F Di Carli
- Cardiovascular Imaging Program, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew Einstein
- Division of Cardiology, Department of Medicine, and Department of Radiology, Columbia University Medical Center and New York-Presbyterian Hospital, New York, NY, USA
| | - Raymond Russell
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - James R Corbett
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, and Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Murthy VL, Bateman TM, Beanlands RS, Berman DS, Borges-Neto S, Chareonthaitawee P, Cerqueira MD, deKemp RA, DePuey EG, Dilsizian V, Dorbala S, Ficaro EP, Garcia EV, Gewirtz H, Heller GV, Lewin HC, Malhotra S, Mann A, Ruddy TD, Schindler TH, Schwartz RG, Slomka PJ, Soman P, Di Carli MF. Clinical Quantification of Myocardial Blood Flow Using PET: Joint Position Paper of the SNMMI Cardiovascular Council and the ASNC. J Nucl Med 2017; 59:273-293. [PMID: 29242396 DOI: 10.2967/jnumed.117.201368] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Venkatesh L Murthy
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Rob S Beanlands
- National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Daniel S Berman
- Departments of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Salvador Borges-Neto
- Division of Nuclear Medicine, Department of Radiology, and Division of Cardiology, Department of Medicine, Duke University School of Medicine, Duke University Health System, Durham, North Carolina
| | | | | | - Robert A deKemp
- National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - E Gordon DePuey
- Division of Nuclear Medicine, Department of Radiology, Mt. Sinai St. Luke's and Mt. Sinai West Hospitals, Icahn School of Medicine at Mt. Sinai, New York, New York
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sharmila Dorbala
- Cardiovascular Imaging Program, Brigham and Women's Hospital, Boston, Massachusetts
| | - Edward P Ficaro
- Division of Nuclear Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ernest V Garcia
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia
| | - Henry Gewirtz
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gary V Heller
- Gagnon Cardiovascular Institute, Morristown Medical Center, Morristown, NJ, USA
| | | | - Saurabh Malhotra
- Division of Cardiovascular Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - April Mann
- Hartford Hospital, Hartford, Connecticut
| | - Terrence D Ruddy
- National Cardiac PET Centre, Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Thomas H Schindler
- Division of Nuclear Medicine, Department of Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Ronald G Schwartz
- Cardiology Division, Department of Medicine, and Nuclear Medicine Division, Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York; and
| | - Piotr J Slomka
- Departments of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Prem Soman
- Division of Cardiology, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marcelo F Di Carli
- Cardiovascular Imaging Program, Brigham and Women's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
9
|
Benefit of ECG-gated rest and stress N-13 cardiac PET imaging for quantification of LVEF in ischemic patients. Nucl Med Commun 2015. [PMID: 26225941 DOI: 10.1097/mnm.0000000000000352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND ECG-gated rest-stress cardiac PET can lead to simultaneous quantification of both left ventricular ejection fraction and flow impairment. In this study, our aim was to assess the benefit of rest and stress PET ejection fraction (EF) (EFp) in relation to single-photon emission computed tomography (SPECT) EF (EFs) and echocardiography EF (EFe). To this effect, the EFp was compared with EFs and EFe. Further, the relation between rest and stress EFp was also assessed. METHODS ECG-gated N-13 ammonia rest and stress PET imaging was performed in 26 patients. EFp values were obtained using gated reconstruction of the data in Flowquant. In 13 patients, EFs and EFe values were obtained through chart review. Correlation, analysis of variance, and Bland-Altman analyses were performed. P values less than 0.05 were used for statistical significance. RESULTS The rest and stress EFp values correlated significantly (r=0.80 and 0.71, respectively; P<0.05) with EFs values. There was moderate correlation with statistical significance (P<0.05) between the rest and stress EFp and EFe values (r=0.58 and 0.50, respectively). The mean rest and stress EFp values were not significantly different from mean EFs values. Also, the rest EFp and stress EFp values correlated well (r=0.81, P<0.05) and were not significantly different. Bland-Altman analysis showed no significant bias between the rest and stress EFp, and EFs, and EFe values. CONCLUSION Rest and stress EFp values obtained through an ECG-gated PET scan can be used for clinical diagnosis in place of conventional methods like SPECT and echocardiography.
Collapse
|