1
|
Ogawa K, Nishizawa K, Washiyama K, Munekane M, Fuchigami T, Echigo H, Mishiro K, Hirata S, Wakabayashi H, Takahashi K, Kinuya S. Astatine-211-labeled aza-vesamicol derivatives as sigma receptor ligands for targeted alpha therapy. Nucl Med Biol 2023; 122-123:108369. [PMID: 37516066 DOI: 10.1016/j.nucmedbio.2023.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023]
Abstract
INTRODUCTION As sigma receptors are abundantly expressed on different types of cancer cells, several radiolabeled sigma receptor ligands have been developed for cancer imaging and therapy. Previously, we synthesized and evaluated radioiodinated aza-vesamicol derivatives, [125I]pIC3NV, [125I]mIC2N5V, and [125I]mIC3N5V. They accumulated in tumors, and [125I]mIC2N5V and [125I]mIC3N5V showed higher tumor to non-target tissue ratios than [125I]pIC3NV. Therefore, we synthesized and evaluated the corresponding 211At-labeled compounds, [211At]mAtC2N5V and [211At]mAtC3N5V, for targeted alpha therapy (TAT). METHODS [211At]mAtC2N5V and [211At]mAtC3N5V were prepared by the standard method of electrophilic astatodestannylation of the corresponding trimethylstannyl precursors. Cellular uptake experiments, and biodistribution experiments and therapeutic experiments in tumor-bearing mice were performed. RESULTS The radiochemical yields of [211At]mAtC2N5V and [211At]mAtC3N5V were 45.5 ± 14.4% and 56.9 ± 13.8%, respectively. After HPLC purification, their radiochemical purities were over 95%. [211At]mAtC2N5V and [211At]mAtC3N5V showed high uptake in DU-145 cells. They demonstrated high accumulation in tumors (6.9 ± 1.4%injected dose/g and 5.1 ± 1.4%injected dose/g at 1 h, respectively) and similar biodistribution tendencies compared with the corresponding 125I-labeled compounds. A single injection of [211At]mAtC2N5V (0.48 MBq) or [211At]mAtC3N5V (0.48 MBq) significantly inhibited tumor growth. CONCLUSION These results indicated that [211At]mAtC2N5V and [211At]mAtC3N5V could be potential candidates for TAT.
Collapse
Affiliation(s)
- Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Kota Nishizawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kohshin Washiyama
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroaki Echigo
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Saki Hirata
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| | - Kazuhiro Takahashi
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Takara-machi, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
2
|
Wakabayashi H, Mori H, Hiromasa T, Akatani N, Inaki A, Kozaka T, Kitamura Y, Ogawa K, Kinuya S, Taki J. 125I-labeled 2-[4-(2-iodophenyl)piperidino]cyclopentanol ( 125I-OI5V) imaging visualized augmented sigma-1 receptor expression according to the severity of myocardial ischemia. J Nucl Cardiol 2023; 30:653-661. [PMID: 35915325 DOI: 10.1007/s12350-022-03064-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND We aimed to explore how the severity of myocardial ischemia affects myocardial sigma-1 receptor (Sig-1R) expression using 125I-labeled 2-[4-(2-iodophenyl)piperidino]cyclopentanol (125I-OI5V) imaging. METHODS AND RESULTS The left coronary artery was occluded for 30, 20, and 10 minute, to vary the severity of myocardial ischemia, followed by reperfusion. Dual-tracer autoradiography of the left ventricular short-axis slices was performed 3 and 7 days after reperfusion. 125I-OI5V was injected 30 minute before sacrifice and the area at risk (AAR) was evaluated by 99mTc-MIBI. Intense 125I-OI5V uptake was observed in the AAR and was significantly increased with increasing ischemia duration. To evaluate salvaged and nonsalvaged areas (preserved and decreased perfusion areas), triple-tracer autoradiography was performed 3 days after reperfusion. After dual-tracer autoradiography, 201Tl was injected 20 minute post 125I-OI5V injection. On triple-tracer autoradiography, the AAR/normally perfused area 125I-OI5V uptake ratio was positively correlated with the nonsalvaged area/whole left ventricular (LV) area ratio (P < .05). The AAR/normally perfused area 125I-OI5V uptake ratio was negatively correlated with the 201Tl uptake ratio of the AAR to normally perfused areas (P < .05). The comparison of the immunostaining distribution of 125I-OI5V and the macrophage marker CD68 revealed that 125I-OI5V was present mainly in, and immediately adjacent to the macrophage infiltration area. CONCLUSIONS Significant 125I-OI5V uptake in the AAR depends on the duration of ischemia and reduced 201Tl uptake; furthermore, 125I-OI5V was found in and around the macrophage infiltrate area. These results indicate that iodine-labeled OI5V is a promising tool for visualizing Sig-1R expression according to the ischemic burden.
Collapse
Affiliation(s)
- Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Hiroshi Mori
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Norihito Akatani
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Anri Inaki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Takashi Kozaka
- Division of Probe Chemistry for Disease Analysis, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoji Kitamura
- Division of Probe Chemistry for Disease Analysis, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Junichi Taki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
- Kanazawa Advanced Medical Center, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-0934, Japan
| |
Collapse
|
3
|
Mishiro K, Wang M, Hirata S, Fuchigami T, Shiba K, Kinuya S, Ogawa K. Development of tumor-targeting aza-vesamicol derivatives with high affinity for sigma receptors for cancer theranostics. RSC Med Chem 2022; 13:986-997. [PMID: 36092143 PMCID: PMC9384704 DOI: 10.1039/d2md00099g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 07/31/2023] Open
Abstract
As sigma receptors are highly expressed on various cancer cells, radiolabeled sigma receptor ligands have been developed as imaging and therapeutic probes for cancer. Previously, we synthesized and evaluated a radioiodinated vesamicol derivative, 2-(4-[125I](4-iodophenyl)piperidine)cyclohexanol ((+)-[125I]pIV), and a radioiodinated aza-vesamicol derivative, trans-2-(4-(3-[125I](4-iodophenyl)propyl)piperazin-1-yl)cyclohexan-1-ol ([125I]2), as sigma-1 receptor-targeting probes. In order to obtain sigma receptor-targeting probes with superior biodistribution characteristics, we firstly synthesized twelve bromine-containing aza-vesamicol derivatives and evaluated their affinity for sigma receptors. One such derivative exhibited high selectivity for the sigma-1 receptor and another exhibited high affinity for both the sigma-1 and sigma-2 receptors. Thus, their halogen-substituted iodine- and radioiodine-containing compounds were prepared. The 125I-labeled compounds exhibited high uptake in tumor and lower uptake in non-target tissues than the two previously developed and evaluated 125I-labeled sigma receptor-targeting probes, [125I]pIV and [125I]2. Therefore, these novel radioiodine-labeled compounds should be promising as sigma receptor-targeting probes.
Collapse
Affiliation(s)
- Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Mengfei Wang
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Saki Hirata
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Takeshi Fuchigami
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Kazuhiro Shiba
- Research Center for Experimental Modeling of Human Disease, Kanazawa University Takara-machi Kanazawa Ishikawa 920-8640 Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University Takara-machi Kanazawa Ishikawa 920-8641 Japan
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
4
|
Wakabayashi H, Taki J, Mori H, Hiromasa T, Akatani N, Inaki A, Kozaka T, Shiba K, Ogawa K, Kinuya S. Visualization of Dynamic Expression of Myocardial Sigma-1 Receptor After Myocardial Ischemia and Reperfusion Using Radioiodine-Labeled 2-[4-(2-iodophenyl)piperidino]cyclopentanol (OI5V) Imaging. Circ J 2021; 85:2102-2108. [PMID: 34176868 DOI: 10.1253/circj.cj-21-0320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND This study chronologically evaluated the expression of the intensity and distribution of the sigma-1 receptor (σ1R) demonstrated by radiolabeled 2-[4-(2-iodophenyl)piperidino]cyclopentanol (OI5V) in a rat model of myocardial ischemia and reperfusion. METHODS AND RESULTS The left coronary artery was occluded for 30 min, followed by reperfusion. Dual-tracer autoradiography with 125I-OI5V and 99 mTc-MIBI was performed to assess the spatiotemporal changes in 125I-OI5V uptake (n=5-6). Significant and peaked 125I-OI5V uptake in the ischemic area was observed at 3 days after reperfusion, and the 125I-OI5V uptake ratio of ischemic area to normally perfused left ventricular area decreased gradually from 3 to 28 days (mean value±SD; 0.90±0.12 at 1 day, 1.89±0.19 at 3 days, 1.52±0.17 at 7 days, 1.34±0.13 at 14 days, and 1.16±0.14 at 28 days, respectively). Triple-tracer autoradiography with 125I-OI5V, 99 mTc-MIBI, and 201TlCl was performed to evaluate 125I-OI5V uptake in the ischemic area in relation to the residual perfusion at 7 days (n=4). The 125I-OI5V uptake ratio of the non-salvaged area was higher compared to that of the salvaged area in the ischemic area. 123I-OI5V and 99 mTc-MIBI SPECT/CT was performed 3 days after reperfusion (n=3), and the in vivo images showed clear uptake of 123I-OI5V in the perfusion defect area. CONCLUSIONS The present study confirmed the spatiotemporal expression pattern of σ1R expression. Non-invasive σ1R imaging with 123I or 125I-OI5V was feasible to monitor the expression of σ1R after myocardial ischemia and reperfusion.
Collapse
Affiliation(s)
| | - Junichi Taki
- Department of Nuclear Medicine, Kanazawa University Hospital
| | - Hiroshi Mori
- Department of Nuclear Medicine, Kanazawa University Hospital
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Kanazawa University Hospital
| | | | - Anri Inaki
- Department of Nuclear Medicine, Kanazawa University Hospital
| | - Takashi Kozaka
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University
| | - Kazuhiro Shiba
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University
| | - Kazuma Ogawa
- Institute for Frontier Science Initiative, Kanazawa University
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital
| |
Collapse
|