1
|
Mehta NH, Wang X, Keil SA, Xi K, Zhou L, Lee K, Tan W, Spector E, Goldan A, Kelly J, Karakatsanis NA, Mozley PD, Nehmeh S, Chazen JL, Morin S, Babich J, Ivanidze J, Pahlajani S, Tanzi EB, Saint-Louis L, Butler T, Chen K, Rusinek H, Carare RO, Li Y, Chiang GC, de Leon MJ. [1- 11C]-Butanol Positron Emission Tomography reveals an impaired brain to nasal turbinates pathway in aging amyloid positive subjects. Fluids Barriers CNS 2024; 21:30. [PMID: 38566110 PMCID: PMC10985958 DOI: 10.1186/s12987-024-00530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Reduced clearance of cerebrospinal fluid (CSF) has been suggested as a pathological feature of Alzheimer's disease (AD). With extensive documentation in non-human mammals and contradictory human neuroimaging data it remains unknown whether the nasal mucosa is a CSF drainage site in humans. Here, we used dynamic PET with [1-11C]-Butanol, a highly permeable radiotracer with no appreciable brain binding, to test the hypothesis that tracer drainage from the nasal pathway reflects CSF drainage from brain. As a test of the hypothesis, we examined whether brain and nasal fluid drainage times were correlated and affected by brain amyloid. METHODS 24 cognitively normal subjects (≥ 65 years) were dynamically PET imaged for 60 min. using [1-11C]-Butanol. Imaging with either [11C]-PiB or [18F]-FBB identified 8 amyloid PET positive (Aβ+) and 16 Aβ- subjects. MRI-determined regions of interest (ROI) included: the carotid artery, the lateral orbitofrontal (LOF) brain, the cribriform plate, and an All-turbinate region comprised of the superior, middle, and inferior turbinates. The bilateral temporalis muscle and jugular veins served as control regions. Regional time-activity were used to model tracer influx, egress, and AUC. RESULTS LOF and All-turbinate 60 min AUC were positively associated, thus suggesting a connection between the brain and the nose. Further, the Aβ+ subgroup demonstrated impaired tracer kinetics, marked by reduced tracer influx and slower egress. CONCLUSION The data show that tracer kinetics for brain and nasal turbinates are related to each other and both reflect the amyloid status of the brain. As such, these data add to evidence that the nasal pathway is a potential CSF drainage site in humans. These data warrant further investigation of brain and nasal contributions to protein clearance in neurodegenerative disease.
Collapse
Affiliation(s)
- Neel H Mehta
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Harvard Medical School, Boston, MA, USA
| | - Xiuyuan Wang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Samantha A Keil
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Ke Xi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Kevin Lee
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Weill Cornell Medicine, School of Medicine New York, New York, NY, USA
| | - Wanbin Tan
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Edward Spector
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- University of Michigan, Ann Arbor, MI, USA
| | - Amirhossein Goldan
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - James Kelly
- Department of Radiology, Molecule Imaging Innovations Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - P David Mozley
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Radiopharm Theranostics, New York, NY, USA
| | - Sadek Nehmeh
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - J Levi Chazen
- Department of Radiology, Hospital for Special Surgery, New York, NY, USA
| | - Simon Morin
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | | | - Jana Ivanidze
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Silky Pahlajani
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Emily B Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | | | - Tracy Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Kewei Chen
- College of Health Solutions, Arizona State University, Downtown Phoenix Campus, Arizona, USA
| | - Henry Rusinek
- Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61 Street, 10065, New York, NY, USA.
| |
Collapse
|
2
|
Phillips WT, Issa NJ, Elhalwagi SB, Draeger HT, Schwartz JG, Gelfond JA. Nasal and Parotid Blood Pool Activity Is Significantly Correlated with Metabolic Syndrome Components and Sleep Apnea. Metab Syndr Relat Disord 2022; 20:395-404. [PMID: 35731008 DOI: 10.1089/met.2022.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Patients with metabolic syndrome components were frequently noted to have increased nasal and parotid activity on clinically referred scintigraphic whole-body blood pool scans. This increase in activity was not observed in patients without metabolic syndrome. Increased nasal blood pool activity in patients with elevated body mass indices (BMIs) has implications for (1) sleep apnea, (2) risk of nasal infection, and (3) possible impaired nasal lymphatic drainage of brain waste proteins. Methods: To follow-up this clinical observation, a retrospective study was performed on 200 patients having whole-body blood pool scans referred over a 3-year period. The whole-body blood pool scans were evaluated for an association between nose and parotid region of interest (ROI) to heart ROI maximum (max) pixel ratios as correlated with clinical conditions, including obesity, diabetes, hypertension, and sleep apnea. Continuous variables of BMI, hemoglobin A1c (HbA1c), blood glucose, and blood lipids were also correlated with these ratios. Results: A direct association of nose to heart max ratio (NHMR) with diabetes, sleep apnea, and hypertension was found with an increase in the ratio of +0.10 (P = 0.002), +0.13 (P = 0.0002), +0.08 (P = 0.0123), respectively. Correlation of NHMR with continuous variables had moderate correlation with BMI (r = 0.36, P < 0.0001), glucose (r = 0.27, P = 0.0001), HbA1c (r = 0.25, P = 0.0008) and less association with the number of diabetes medications (r = 0.22, P = 0.0021). Similar associations were found for parotid to heart max ratios but were weaker than the NHMR. Conclusions: Patients with metabolic syndrome components have significantly increased nasal and parotid activity on blood pool scans. These associations have implications for the treatment of sleep apnea, for nasal infections involving such agents as Covid-19, and for the risk of dementias related to decreased clearance of brain waste proteins through nasal turbinate lymphatics in patients with metabolic syndrome. If further studies support these findings, the nasal turbinates and the increased parasympathetic activity controlling their dilation could become a new therapeutic target.
Collapse
Affiliation(s)
- William T Phillips
- Department of Radiology, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Nasser J Issa
- Department of Radiology, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | - Shereef B Elhalwagi
- Department of Radiology, University of Texas Health-San Antonio, San Antonio, Texas, USA
| | | | - Joyce G Schwartz
- Department of Pathology, Methodist Hospital, San Antonio, Texas, USA
| | - Jonathan A Gelfond
- Population Health Sciences, University of Texas Health-San Antonio, San Antonio, Texas, USA
| |
Collapse
|