1
|
Eddehech A, Tropea A, Rigano F, Donnarumma D, Ben Abdallah E, Cacciola F, Mondello L, Zarai Z. Evaluation of Microbial Phospholipase and Lipase Activity Through the Chromatographic Analysis of Crude, Degummed, and Transesterified Soybean Oil for Biodiesel Production. J Sep Sci 2024; 47:e202400325. [PMID: 39375897 DOI: 10.1002/jssc.202400325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
The present study aimed at synthesizing fatty acid methyl esters in a combined enzymatic method by applying degumming and transesterification of soybean oil. A soluble lipase from Serratia sp. W3 and a recombinant phosphatidylcholine-preferring phospholipase C (PC-PLC) from Bacillus thuringiensis were used in a consecutive manner for phosphorus removal and conversion into methyl esters. By applying 1% of recombinant PC-PLC almost 83% of phosphorus was removed (final content of 21.01 mg/kg). Moreover, a sensitive and selective high-performance liquid chromatography method coupled to tandem mass spectrometry was applied to obtain a comprehensive lipid profile for the simultaneous evaluation of phospholipids removal and diacylglycerol (DAG) increase. A significant increase for all the monitored DAG species, up to 138.42%, was observed by using the enzymatic degumming, in comparison to the crude sample, resulting in an increased oil yield. Serratia sp. W3 lipase was identified as a suitable biocatalyst for biodiesel production, converting efficiently the acylglycerols. The results regarding the physical-chemical characteristics show that the cetane level, density and pour point of the obtained biodiesel are close to current regulation requirements. These findings highlight the potential of a two-step process implementation, based on the combination of lipase and phospholipase, as a suitable alternative for biodiesel production.
Collapse
Affiliation(s)
- Ahlem Eddehech
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| | - Alessia Tropea
- Messina Institute of Technology, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesca Rigano
- Messina Institute of Technology, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Danilo Donnarumma
- Messina Institute of Technology, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emna Ben Abdallah
- Analysis and Testing Lab, New Company of Chemical Products, SNPC, Sfax, Tunisia
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Luigi Mondello
- Messina Institute of Technology, c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zied Zarai
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
2
|
Jan HA, Osman AI, Al-Fatesh AS, Almutairi G, Surina I, Al-Otaibi RL, Al-Zaqri N, Kumar R, Rooney DW. Biodiesel production from Sisymbrium irio as a potential novel biomass waste feedstock using homemade titania catalyst. Sci Rep 2023; 13:11282. [PMID: 37438448 PMCID: PMC10338498 DOI: 10.1038/s41598-023-38408-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
Biomass waste streams are a possible feedstock for a range of eco-friendly products and a crucial alternative energy source for achieving carbon neutrality; therefore, the efficient management of biomass waste has taken on a greater significance in recent years. Due to its well-comparable physic-chemical properties with fossil diesel, biodiesel is a potential substitute for fossil fuel. This study aimed to synthesize biodiesel from the widely available non-edible seed oil of Sisymbrium irio L. (a member of the Brassicaceae family) via a transesterification procedure over a homemade TiO2 catalyst. At 1:16 oil to methanol ratio, 93% biodiesel yield was obtained over 20 mg catalyst at 60 °C and 60 min. The ASTM methods were used to analyze the fuel properties. The quantitative and qualitative analysis was performed by FT-IR, GC-MS, and NMR spectroscopy. GC-MS study confirms 16 different types of fatty acids of methyl esters. FT-IR analysis showed important peaks that confirm the successful occurrence of biodiesel. 1H-NMR and 13C-NMR showed important peaks for converting triglycerides into corresponding FAMEs. The acid value (0.42 mg KOH/mg/kg), flash point (106 °C), and water content (0.034) of biodiesel are below the specified limit of ASTM D6751 whereas kinetic viscosity (3.72 mm2/s), density (0.874 kg/L), cloud point (- 4.3 °C) and pour point (- 9.6 °C) and high heating value (41.62 MJ/kg) fall within the specified range of ASTM D6751 test limit. The Unsaturation degree and oxidative stability of biodiesel are above ASTM D6751 test limit. The physic-chemical properties of the SIB confirm that it is eco-friendly fuel and a competitive source for manufacturing biodiesel on a commercial scale. Furthermore, the SIB is engine friendly and has good fuel efficacy.
Collapse
Affiliation(s)
- Hammad Ahmad Jan
- Department of Botany, University of Buner, Swari, 19290, Pakistan
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, UK.
| | - Ahmed S Al-Fatesh
- Chemical Engineering Department, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia.
| | - Ghzzai Almutairi
- Water and Energy Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyath, Saudi Arabia.
| | - Igor Surina
- Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovakia
| | | | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rawesh Kumar
- Department of Chemistry, Indus University, Ahmedabad, 382115, India
| | - David W Rooney
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, Northern Ireland, UK
| |
Collapse
|
3
|
Fatty Acid Alkyl Ester Production by One-Step Supercritical Transesterification of Beef Tallow by Using Ethanol, Iso-Butanol, and 1-Butanol. Processes (Basel) 2023. [DOI: 10.3390/pr11030742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The effect of temperature was studied on the synthesis of fatty acid alkyl esters by means of transesterification of waste beef tallow using ethanol and, iso-butanol and 1-butanol at supercritical conditions. These alcohols are proposed for the synthesis of biodiesel in order to improve the cold flow properties of alkyl esters. Alcohol–beef tallow mixtures were fed to a high-pressure high-temperature autoclave at a constant molar ratio of 45:1. Reactions were carried out in the ranges of 310–390 °C and 310–420 °C for ethanol and iso-butanol, respectively; meanwhile, synthesis using 1-butanol was assessed only at 360 °C. After separation of fatty acid alkyl esters, these samples were characterized by nuclear magnetic resonance (NMR) and gas chromatography coupled to mass spectrometry (GC-MS) to quantify yields, chemical composition, and molecular weight. Results indicated that yields enhanced as temperature increased; the maximum yields for fatty acid ethyl esters (FAEEs) were attained at 360 °C, and for fatty acid butyl esters (FABEs) were achieved at 375 °C; beyond these conditions, the alkyl ester yields reached equilibrium. Concerning the physicochemical properties of biodiesel, the predicted cetane number and cloud point were enhanced compared to those of fatty acid methyl esters.
Collapse
|
4
|
Bifunctional Co3O4/ZSM-5 Mesoporous Catalysts for Biodiesel Production via Esterification of Unsaturated Omega-9 Oleic Acid. Catalysts 2022. [DOI: 10.3390/catal12080900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present work, two sets of the Co/ZSM-5 mesoporous catalysts with different acidity and Co loadings varying from 1 to 5 and 10 wt% were prepared using mesoporous ZSM-5-A (Si/Al = 50) and ZSM-5-B (Si/Al = 150) as support. X-ray diffraction (XRD) analysis showed that the Co3O4 phase was formed in the surface of catalysts and the reducibility of Co3O4 nanoparticles on the ZSM-5-B was greater in comparison with that on the ZSM-5-A solid. In situ FTIR of pyridine adsorption characterization confirmed that all of the Co/ZSM-5 catalysts contained both Lewis (L) and Brønsted (B) acid sites, with a relatively balanced B/L ratio ranging from 0.61 to 1.94. Therefore, the Si/Al molar ratio in ZSM-5 affected both the surface acidity and the cobalt oxide reducibility. In the esterification of unsaturated omega-9 oleic acid with methanol, under the optimal reaction conditions (temperature 160 °C, catalyst concentration 2 g/L, methanol/oleic acid molar ratio 30, and reaction time 180 min), the biodiesel selectivity reached 95.1% over the most active 10 wt% Co/ZSM-5-B catalyst. The higher esterification activity of the Co/ZSM-5-B catalysts can be correlated with the greater amount of B and L acid sites, the balanced B/L ratio, and the higher reducibility of Co3O4 nanoparticles. The oleic acid esterification reaction followed the bifunctional mechanism of combining metal function (dispersed Co3O4 with a greater reducibility) with the acidity function (both B and L acid sites with a relative balanced B/L ratio) on the catalysts, which may help in providing a deep understanding of the esterification pathways and benefiting the design of novel bifunctional catalysts for biofuel production.
Collapse
|
5
|
Norouzian Baghani A, Sadjadi S, Yaghmaeian K, Hossein Mahvi A, Yunesian M, Nabizadeh R. Solid alcohol biofuel based on waste cooking oil: Preparation, properties, micromorphology, heating value optimization and its application as candle wax. RENEWABLE ENERGY 2022. [DOI: 10.1016/j.renene.2022.04.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
6
|
Singh N, Agarwal P, Porwal SK. Natural Antioxidant Extracted Waste Cooking Oil as Sustainable Biolubricant Formulation in Tribological and Rheological Applications. WASTE AND BIOMASS VALORIZATION 2022; 13:3127-3137. [PMID: 35251381 PMCID: PMC8887803 DOI: 10.1007/s12649-022-01745-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Developing eco-friendly formulations using waste cooking oil as renewable biomass is of great interest and commercial importance in the fuels and lubricant industry. This manuscript reports novel study on preparing a biolubricant formulations as WCO-1, WCO-2 and WCO-3 by blending the curcumin extracted soybean waste cooking oil in three different compositions viz 10%, 20%, 30% v/v with the mineral base oil N-150. Curcumin was extracted as a natural antioxidant in 0.5 wt% waste cooking oil to inhibit thermal oxidation. This study comprises a detailed analysis in terms of tribological, rheological and thermophysical characteristics such as viscosity, viscosity index, pour point and flash point parameters of the biolubricant by standard ASTM methods. Further, tribological and rheological analysis was done by the four-ball wear tester and Anton Paar, MCR-72, respectively. The thermophysical evaluation of WCO formulated biolubricant has shown excellent properties. The viscosity index of the formulated biolubricant increases with an increase in the concentration of waste cooking oil. In contrast, the pour point has also been depressing at lower temperature conditions. Thus, WCO based biolubricant was found to be more effective at extreme temperature conditions than the mineral base oil (N-150). Rheological studies have indicated the non-Newtonian behaviour of the biolubricant with an increase in shear rate. Whereas, tribological analysis demonstrates that wear scar diameter has significantly reduced from 0.685 to 0.573 mm, and the coefficient of friction decreased from 0.117 to 0.080 with respect to the mineral base oil. Thus, a straightforward green approach has been discovered by directly utilizing waste cooking oil for biolubricant formulation.
Collapse
Affiliation(s)
- Nisha Singh
- Analytical Chemistry Lab, Department of Chemistry, DIT University, Dehradun, Uttarakhand 248009 India
| | - Priyanka Agarwal
- Analytical Chemistry Lab, Department of Chemistry, DIT University, Dehradun, Uttarakhand 248009 India
| | - Suheel K. Porwal
- Analytical Chemistry Lab, Department of Chemistry, DIT University, Dehradun, Uttarakhand 248009 India
| |
Collapse
|
7
|
Hossain M, Goni LKMO, Muntaha N, Jamal MS, Sujan SMA, Ahmed S, Islam D, Bhuiyan RH, Fakhruddin ANM. Box–Behnken design-based optimization for biodiesel production from waste cooking oil using Mahogany (Swietenia macrophylla) fruit shell derived activated carbon as a heterogeneous base catalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01995-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|