1
|
Chen Y, Xia L, Xiao X, Li G. Enhanced capillary zone electrophoresis in cyclic olefin copolymer microchannels using the combination of dynamic and static coatings for rapid analysis of carnosine and niacinamide in cosmetics. J Sep Sci 2022; 45:2045-2054. [PMID: 35324077 DOI: 10.1002/jssc.202101007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022]
Abstract
Cosmetics having medicinal effects, including anti-inflammatory and antioxidant, have become a daily care routine consumption. The peptide additives, such as carnosine and nicotinamide, were frequently used to realize these medicinal effects. To accomplish rapid and effective quantitation of carnosine and niacinamide in cosmetics, a capillary zone electrophoresis was executed in cyclic olefin copolymer microchips having both dynamic and static coatings. The static coating of cyclic olefin copolymer microchannel was constructed from bovine albumin adsorption, immobilization and active site closure, while the dynamic coating was formed by adding surfactant into running buffer of capillary zone electrophoresis. The static coating can improve the hydrophilicity of cyclic olefin copolymer surface and avoid nonspecific peptide adsorption. The dynamic coating of sodium dodecyl sulfate in running buffer proved to be useful in flow velocity adjustment and the column efficiency enhancement in capillary zone electrophoresis separation channel of the cyclic olefin copolymer microchip device. A separation resolution up to 4.24 on the mixture of carnosine and nicotinamide was obtained. Moreover, an analysis method was established and applied to simultaneous carnosine and nicotinamide determination in a liquid whitening essence and a solid antiglycation pill and the results were verified by comparison with HPLC methods, indicating its potential in complex sample analysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yali Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Negut CC, Stefanov C, Gugoasa LAD, van Staden J(KF. Rapidly renewable graphite paste electrode modified with 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphine cobalt(II) for electrochemical determination of nicotinic acid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Ferreira SL, Silva Junior MM, Felix CS, da Silva DL, Santos AS, Santos Neto JH, de Souza CT, Cruz Junior RA, Souza AS. Multivariate optimization techniques in food analysis – A review. Food Chem 2019; 273:3-8. [DOI: 10.1016/j.foodchem.2017.11.114] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/27/2017] [Accepted: 11/30/2017] [Indexed: 02/04/2023]
|
4
|
Ibáñez C, Acunha T, Valdés A, García-Cañas V, Cifuentes A, Simó C. Capillary Electrophoresis in Food and Foodomics. Methods Mol Biol 2016; 1483:471-507. [PMID: 27645749 DOI: 10.1007/978-1-4939-6403-1_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quality and safety assessment as well as the evaluation of other nutritional and functional properties of foods imply the use of robust, efficient, sensitive, and cost-effective analytical methodologies. Among analytical technologies used in the fields of food analysis and foodomics, capillary electrophoresis (CE) has generated great interest for the analyses of a large number of compounds due to its high separation efficiency, extremely small sample and reagent requirements, and rapid analysis. The introductory section of this chapter provides an overview of the recent applications of capillary electrophoresis (CE) in food analysis and foodomics. Relevant reviews and research articles on these topics are tabulated including papers published in the period 2011-2014. In addition, to illustrate the great capabilities of CE in foodomics the chapter describes the main experimental points to be taken into consideration for a metabolomic study of the antiproliferative effect of carnosic acid (a natural diterpene found in rosemary) against HT-29 human colon cancer cells.
Collapse
Affiliation(s)
- Clara Ibáñez
- Foodomics Laboratory, CIAL, CSIC, c/Nicolas Cabrera, 9 Campus Cantoblanco, Madrid, 28049, Spain
| | - Tanize Acunha
- Foodomics Laboratory, CIAL, CSIC, c/Nicolas Cabrera, 9 Campus Cantoblanco, Madrid, 28049, Spain
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70.040-020, Brazil
| | - Alberto Valdés
- Foodomics Laboratory, CIAL, CSIC, c/Nicolas Cabrera, 9 Campus Cantoblanco, Madrid, 28049, Spain
| | - Virginia García-Cañas
- Foodomics Laboratory, CIAL, CSIC, c/Nicolas Cabrera, 9 Campus Cantoblanco, Madrid, 28049, Spain
| | - Alejandro Cifuentes
- Foodomics Laboratory, CIAL, CSIC, c/Nicolas Cabrera, 9 Campus Cantoblanco, Madrid, 28049, Spain
| | - Carolina Simó
- Foodomics Laboratory, CIAL, CSIC, c/Nicolas Cabrera, 9 Campus Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
5
|
Acunha T, Ibáñez C, García-Cañas V, Simó C, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2015; 37:111-41. [DOI: 10.1002/elps.201500291] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Tanize Acunha
- Laboratory of Foodomics; CIAL, CSIC; Madrid Spain
- CAPES Foundation; Ministry of Education of Brazil; Brasília DF Brazil
| | - Clara Ibáñez
- Laboratory of Foodomics; CIAL, CSIC; Madrid Spain
| | | | | | | |
Collapse
|
6
|
García-Cañas V, Simó C, Castro-Puyana M, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2013; 35:147-69. [DOI: 10.1002/elps.201300315] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 12/25/2022]
|
7
|
Alnajjar AO, Idris AM. Development of a CZE Method for the Quantification of Pseudoephedrine and Cetirizine. J Chromatogr Sci 2013; 52:1104-8. [DOI: 10.1093/chromsci/bmt141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Orlandini S, Gotti R, Furlanetto S. Multivariate optimization of capillary electrophoresis methods: a critical review. J Pharm Biomed Anal 2013; 87:290-307. [PMID: 23669025 DOI: 10.1016/j.jpba.2013.04.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 11/19/2022]
Abstract
In this article a review on the recent applications of multivariate techniques for optimization of electromigration methods, is presented. Papers published in the period from August 2007 to February 2013, have been taken into consideration. Upon a brief description of each of the involved CE operative modes, the characteristics of the chemometric strategies (type of design, factors and responses) applied to face a number of analytical challenges, are presented. Finally, a critical discussion, giving some practical advices and pointing out the most common issues involved in multivariate set-up of CE methods, is provided.
Collapse
Affiliation(s)
- Serena Orlandini
- Department of Chemistry "U. Schiff", University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | | | | |
Collapse
|