1
|
Zhang R, Zhang Q, Yang J, Yu S, Yang X, Luo X, He Y. Ultrasensitive detection strategy for CAP by molecularity imprinted SERS sensor based on multiple synergistic enhancement of SiO 2@AuAg with MOFs@Au signal carrier. Food Chem 2024; 445:138717. [PMID: 38354642 DOI: 10.1016/j.foodchem.2024.138717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Chloramphenicol (CAP) residue in food can cause great harm to human health, it is important to develop a rapid and sensitive method to detect CAP. Here, molecularly imprinted polymer (MIP) was combined with metal-organic frameworks@Au (MOFs@Au) collaborative construction surface-enhanced Raman spectroscopy (SERS) based aptasensor for CAP ultrasensitive detection. MOFs@Au first carried the Raman signal molecule toluidine blue (TB) and aptamer to form MOFs@Au@TB@Apt. In addition, rMIP (CAP was removed) was dropped onto the uniform three-dimensional (3D) SERS substrate SiO2@AuAg to form SiO2@AuAg@rMIP. In the presence of target CAP, it could be specifically captured with rMIP by covalent interaction and was recognised by the aptamer. During this time, SiO2@AuAg@rMIP@CAP could selectively connect MOFs@Au@TB@Apt to realise synergistic enhance the Raman signal. Based on this principle, the proposed SERS aptasensor exhibits excellent sensitivity with a detection limit of 7.59×10-13 M for CAP, providing a new strategy for trace detection in food.
Collapse
Affiliation(s)
- Runzi Zhang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Qianyan Zhang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Jia Yang
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Shuping Yu
- School of Science, Xihua University, Chengdu 610039, PR China
| | - Xiao Yang
- School of Science, Xihua University, Chengdu 610039, PR China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu 610039, PR China.
| | - Yi He
- School of Science, Xihua University, Chengdu 610039, PR China.
| |
Collapse
|
2
|
Wang Z, Wang M, Fu X, Qian J, Wang M, Tan G. Novel hapten design, highly sensitive monoclonal antibody production, and immunoassay development for rapid screening of illegally added chloramphenicol in cosmetics. J Immunol Methods 2024; 525:113604. [PMID: 38142928 DOI: 10.1016/j.jim.2023.113604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Hapten design and synthesis have been regarded as the key factor to generate high-quality antibodies. In the present study, a novel hapten of chloramphenicol was synthesized, characterized and compared with two conventional haptens. The new hapten generated mAb 4B5 showed higher sensitivity and titer than the other two haptens-based mAbs. The haptens synthesized with the structure of chloramphenicol base generated more sensitive antibodies than the hapten with chloramphenicol succinate, and the spacer arm linked to the phenyl group hapten elicited the strongest antibody response. After optimization, a direct competitive enzyme-linked immunosorbent assay (dcELISA) and a lateral flow immunoassay (LFIA), both based on the mAb 4B5, were developed. The dcELISA had a half maximum inhibition concentration of 0.23 ng/mL and the LFIA showed a cutoff value of 5-10 ng/mL. The LFIA was applied to detect illegally-added chloramphenicol samples in anti-acne cosmetics, five out of 19 samples were tested chloramphenicol containing within 10 min, which result was confirmed with the dcELISA and HPLC. The LFIA has an adequate sensitivity and can be used as a point of care diagnostic device for rapidly screening chloramphenicol in cosmetics.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- College of Life Sciences, Capital Normal University, Beijing 100089, China; College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Mian Wang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaoxiang Fu
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jingqi Qian
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Guiyu Tan
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Han Q, Fan L, Liu X, Tang Y, Wang P, Shu Z, Zhang W, Zhu L. Lateral Flow Immunoassay Based on Quantum-Dot Nanobeads for Detection of Chloramphenicol in Aquatic Products. Molecules 2023; 28:7496. [PMID: 38005218 PMCID: PMC10673565 DOI: 10.3390/molecules28227496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Quantum dot nanobeads (QBs) were used as signal source to develop competitive lateral flow immunoassay (LFIA) for the detection of chloramphenicol (CAP). The quantitative detection of CAP was achieved by calculating the total color difference (∆E) values of the test line (T line) using the images of test strips. QB-based LFIA (QBs-LFIA) allowed the effective dynamic linear detection of CAP in the range of 0.1-1.5 ng/mL. The limit of detection (LOD) was 3.0 ng/mL, which was 50 and 667 times lower than those achieved for two different brands of colloidal gold kits. The recoveries of CAP during real-sample detection were 82.82-104.91% at spiked levels of 0.1, 0.7, and 1.5 ng/mL. These results indicate that the developed QBs-LFIA facilitates the sensitive detection of CAP.
Collapse
Affiliation(s)
- Qian Han
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China; (Q.H.); (P.W.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430028, China
| | - Ling Fan
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China;
| | - Xiuying Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China; (Q.H.); (P.W.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430028, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Pingping Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China; (Q.H.); (P.W.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430028, China
| | - Zaixi Shu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China; (Q.H.); (P.W.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430028, China
| | - Wei Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China; (Q.H.); (P.W.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430028, China
| | - Lijie Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China; (Q.H.); (P.W.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan 430028, China
| |
Collapse
|
4
|
Nguyen TN, Thi Pham N, Ngo DH, Kumar S, Cao XT. Covalently Functionalized Graphene with Molecularly Imprinted Polymers for Selective Adsorption and Electrochemical Detection of Chloramphenicol. ACS OMEGA 2023; 8:25385-25391. [PMID: 37483252 PMCID: PMC10357450 DOI: 10.1021/acsomega.3c02839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
Abstract
In this report, we have presented a novel route to attach molecularly imprinted polymers (MIPs) on the surface of reduced graphene oxide (rGO) through covalent bonding. First, the surface of rGO was modified with maleic anhydride (MA) via a Diels-Alder reaction using a deep eutectic solvent (DES). Next, 3-propyl-1-vinylimidazolium molecular units were anchored and polymerized in the presence of ethylene glycol dimethacrylate (EGDMA) using chloramphenicol (CAP) as the template. Primarily, we investigated the effect of the molar ratio of individual precursors on the adsorption capacity of synthesized materials and accordingly fabricated the electrochemical sensor for CAP detection. Electrochemical results evidenced that the covalent bonding of MIP units enhanced the sensitivity of the respective sensor toward CAP in water as well as in real honey samples with high selectivity, stability, and reproducibility. This synthesis strategy involves the covalent binding of MIP on rGO materials via click chemisty under sonication power excluding harmful solvents and energy-intensive processes and thus could be a motivation for developing future electrochemical sensors through similar "green" routes.
Collapse
Affiliation(s)
- Thi Nhat
Thang Nguyen
- Faculty
of Chemical Engineering, Industrial University
of Ho Chi Minh City, Ho Chi
Minh City 700000, Vietnam
| | - Nam Thi Pham
- Institute
for Tropical Technology, Vietnam Academy
of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi 100000, Vietnam
| | - Dai-Hung Ngo
- Thu
Dau Mot University, Thu Dau
Mot City, Binh Duong 820000, Vietnam
| | - Subodh Kumar
- Department
of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Xuan Thang Cao
- Faculty
of Chemical Engineering, Industrial University
of Ho Chi Minh City, Ho Chi
Minh City 700000, Vietnam
| |
Collapse
|
5
|
Yin J, Ouyang H, Li W, Long Y. An Effective Electrochemical Platform for Chloramphenicol Detection Based on Carbon-Doped Boron Nitride Nanosheets. BIOSENSORS 2023; 13:116. [PMID: 36671951 PMCID: PMC9855874 DOI: 10.3390/bios13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Currently, accurate quantification of antibiotics is a prerequisite for health care and environmental governance. The present work demonstrated a novel and effective electrochemical strategy for chloramphenicol (CAP) detection using carbon-doped hexagonal boron nitride (C-BN) as the sensing medium. The C-BN nanosheets were synthesized by a molten-salt method and fully characterized using various techniques. The electrochemical performances of C-BN nanosheets were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results showed that the electrocatalytic activity of h-BN was significantly enhanced by carbon doping. Carbon doping can provide abundant active sites and improve electrical conductivity. Therefore, a C-BN-modified glassy carbon electrode (C-BN/GCE) was employed to determine CAP by differential pulse voltammetry (DPV). The sensor showed convincing analytical performance, such as a wide concentration range (0.1 µM-200 µM, 200 µM-700 µM) and low limit of detection (LOD, 0.035 µM). In addition, the proposed method had high selectivity and desired stability, and can be applied for CAP detection in actual samples. It is believed that defect-engineered h-BN nanomaterials possess a wide range of applications in electrochemical sensors.
Collapse
Affiliation(s)
- Jingli Yin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123, China
| | - Huiying Ouyang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123, China
| | - Weifeng Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yumei Long
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Wei L, Jiao F, Wang Z, Wu L, Dong D, Chen Y. Enzyme-modulated photothermal immunoassay of chloramphenicol residues in milk and egg using a self-calibrated thermal imager. Food Chem 2022; 392:133232. [PMID: 35636182 DOI: 10.1016/j.foodchem.2022.133232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/18/2022] [Accepted: 05/15/2022] [Indexed: 11/04/2022]
Abstract
Highly sensitive and accurate detection of chloramphenicol is of paramount importance for food safety. Herein, an enzyme-modulated photothermal immunosensor that uses a self-calibrated thermal imaging system (SCTIS) as signal read-out was developed for detecting chloramphenicol. In this immunosensor, alkaline phosphatase was used as a modulator of the photothermal conversion. It could hydrolyze the substrate into ascorbic acid, thereby reducing oxidized 3,3',5,5'-tetramethylbenzidine, which exhibited a near-infrared laser-driven photothermal effect. For precise temperature measurement, the SCTIS was designed by using the temperature compensation of a ceramic chip to enable real-time self-calibration of the temperature. This SCTIS-based immunosensor could detect chloramphenicol with a LOD of 9 pg/mL in 2 h, and relative standard derivations from 3.95% to 13.58%. The average recoveries in milk and egg samples ranged from 76% to 114%. This versatile sensing strategy can detect various targets by altering recognition elements, thus has wide applicability in food safety testing and monitoring.
Collapse
Affiliation(s)
- Luyu Wei
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Fu Jiao
- National Engineering Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhilong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Long Wu
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570314, China
| | - Daming Dong
- National Engineering Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Yiping Chen
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China; Hubei HongShan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Zaitsev B, Borodina I, Alsowaidi A, Karavaeva O, Teplykh A, Guliy O. Microbial Acoustical Analyzer for Antibiotic Indication. SENSORS (BASEL, SWITZERLAND) 2022; 22:2937. [PMID: 35458922 PMCID: PMC9031926 DOI: 10.3390/s22082937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
In this study, a compact acoustic analyzer for express analysis of antibiotics based on a piezoelectric resonator with a lateral electric field and combined with a computer was developed. The possibility of determining chloramphenicol in aqueous solutions in the concentration range of 0.5-15 μg/mL was shown. Bacterial cells that are sensitive to this antibiotic were used as a sensory element. The change in the electrical impedance modulus of the resonator upon addition of the antibiotic to the cell suspension served as an analytical signal. The analysis time did not exceed 4 min. The correlation of the experimental results of an acoustic sensor with the results obtained using the light phase-contrast microscopy and standard microbiological analysis was established. The compact biological analyzer demonstrated stability, reproducibility, and repeatability of results.
Collapse
Affiliation(s)
- Boris Zaitsev
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, 410019 Saratov, Russia; (I.B.); (A.T.)
| | - Irina Borodina
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, 410019 Saratov, Russia; (I.B.); (A.T.)
| | - Ali Alsowaidi
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia; (A.A.); (O.K.); (O.G.)
| | - Olga Karavaeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia; (A.A.); (O.K.); (O.G.)
| | - Andrey Teplykh
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov Branch, 410019 Saratov, Russia; (I.B.); (A.T.)
| | - Olga Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia; (A.A.); (O.K.); (O.G.)
| |
Collapse
|
8
|
Chang C, Wang Q, Xue Q, Liu F, Hou L, Pu S. Highly efficient detection of chloramphenicol in water using Ag and TiO2 nanoparticles modified laser-induced graphene electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Najafi A, Farajmand B, Sharafi HR, Yaftian MR. A fast and sensitive detection of low-level chloramphenicol in food samples using the IMS/homogenizer assisted DLPME combination. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Peng YP, He YW, Shen YF, Liang AM, Zhang XB, Liu YJ, Lin JH, Wang JP, Li YB, Fu YC. Fluorescence Nanobiosensor for Simultaneous Detection of Multiple Veterinary Drugs in Chicken Samples. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00199-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Pepsin mediated synthesis of blue fluorescent copper nanoclusters for sensing of flutamide and chloramphenicol drugs. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105947] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Xiao D, Jie Z, Ma Z, Ying Y, Guo X, Wen Y, Yang H. Fabrication of homogeneous waffle-like silver composite substrate for Raman determination of trace chloramphenicol. Mikrochim Acta 2020; 187:593. [PMID: 33026513 DOI: 10.1007/s00604-020-04567-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/25/2020] [Indexed: 11/25/2022]
Abstract
Waffle-like anodized aluminum oxide homogeneously immobilized with Ag nanoparticles (AAO/Ag) is rationally designed and fabricated as surface-enhanced Raman scattering (SERS) substrate. The as-prepared SERS substrate is characterized with transmission electron microscope (TEM), scanning electron microscopy (SEM), UV-Vis spectrophotometer, and Fourier transform infrared spectrometer (FT-IR). The AAO/Ag substrate shows good uniformity of the Raman signals (RSD = 7.02%) due to waffle-like AAO supporting the well-dispersed Ag nanoparticles. For real application, the AAO/Ag substrate is used for rapid determination of chloramphenicol (CAP) in honey with low detection limit (4.0 × 10-9 mol L-1) and good linearity from 1.0 × 10-5 to 1.0 × 10-8 mol L-1 based on the SERS peak at 1348 cm-1. The better accumulation in the short pore path of AAO improves the target molecule approaching into the vicinity of hot spots of Ag nanoparticles. The high selectivity for CAP is attributed to the strong interaction between -NO2 group in CAP and the composite substrate. Schematic representation of the preparation of SERS substrate, AAO150/Ag10-5 composite nanoparticles, and antibiotic determination.
Collapse
Affiliation(s)
- Dongfang Xiao
- Department of Chemistry, Key Laboratory of Resource Chemistry of Ministry of Education, 100 Guilin Road, Shanghai, 200234, People's Republic of China
| | - Zhishun Jie
- Department of Chemistry, Key Laboratory of Resource Chemistry of Ministry of Education, 100 Guilin Road, Shanghai, 200234, People's Republic of China
| | - Zhiyuan Ma
- Department of Chemistry, Key Laboratory of Resource Chemistry of Ministry of Education, 100 Guilin Road, Shanghai, 200234, People's Republic of China
| | - Ye Ying
- Department of Chemistry, Key Laboratory of Resource Chemistry of Ministry of Education, 100 Guilin Road, Shanghai, 200234, People's Republic of China.
| | - Xiaoyu Guo
- Department of Chemistry, Key Laboratory of Resource Chemistry of Ministry of Education, 100 Guilin Road, Shanghai, 200234, People's Republic of China
| | - Ying Wen
- Department of Chemistry, Key Laboratory of Resource Chemistry of Ministry of Education, 100 Guilin Road, Shanghai, 200234, People's Republic of China
| | - Haifeng Yang
- Department of Chemistry, Key Laboratory of Resource Chemistry of Ministry of Education, 100 Guilin Road, Shanghai, 200234, People's Republic of China.
| |
Collapse
|
13
|
Luo L, Zhou X, Pan Y, Zhao K, Deng A, Li J. A simple and sensitive flow injection chemiluminescence immunoassay for chloramphenicol based on gold nanoparticle-loaded enzyme. LUMINESCENCE 2020; 35:877-884. [PMID: 32150663 DOI: 10.1002/bio.3795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 01/10/2023]
Abstract
A simple and ultrasensitive flow injection chemiluminescence competitive immunoassay based on gold nanoparticle-loaded enzyme for the detection of chloramphenicol (CAP) residues in shrimp and honey has been developed. Due to their good biocompatibility and large specific surface area, carboxylic resin beads can be used as solid phase carriers to immobilize more coating antigens (Ag). In addition, gold nanoparticles could provide an effective matrix for loading more CAP antibody and horseradish peroxidase, which would effectively catalyze the system of luminol-p-iodophenol (PIP)-H2 O2 . A competitive immunoassay strategy was used for detection of CAP, in which CAP in the sample would compete with the coating Ag for the limited antibodies, leading to a chemiluminescence (CL) signal decrease with increase in CAP concentration. A wide linear range 0.001-10 ng ml-1 (R2 = 0.9961) was obtained under optimized conditions, and the detection limit (3σ) was calculated to be 0.33 pg ml-1 . This method was also been successfully applied to determine CAP in shrimp and honey samples. The immunosensor proposed in this study not only has the advantages of high sensitivity, wider linear range, and satisfactory stability, but also expands the application of flow injection CL immunoassay in antibiotic detection.
Collapse
Affiliation(s)
- Liegao Luo
- The Key Laboratory of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, China
| | - Xinchun Zhou
- The Key Laboratory of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, China
| | - Yanting Pan
- The Key Laboratory of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, China
| | - Kang Zhao
- The Key Laboratory of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, China
| | - Anping Deng
- The Key Laboratory of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, China
| | - Jianguo Li
- The Key Laboratory of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, China
| |
Collapse
|
14
|
Zhao M, Li X, Zhang Y, Wang Y, Wang B, Zheng L, Zhang D, Zhuang S. Rapid quantitative detection of chloramphenicol in milk by microfluidic immunoassay. Food Chem 2020; 339:127857. [PMID: 32866699 DOI: 10.1016/j.foodchem.2020.127857] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/22/2020] [Accepted: 08/15/2020] [Indexed: 12/26/2022]
Abstract
Chloramphenicol (CAP) is a toxic substance for human health, and detection of CAP residues in milk is necessary. However, most of the traditional CAP detection methods including high performance liquid chromatography-tandem mass spectrometry (HPLC-MS) and enzyme-linked immunosorbent assay (ELISA) are time-consuming and complicated. Herein, an automated microfluidics system for CAP detection in milk was developed. The residual CAP of multiple milk samples was quantitatively detected via competitive immunoassay in a single microfluidic chip simultaneously and automatically, and the reliability of the method was confirmed by flow cytometry. Completion of the detection by the system required less than 20 min and the cost for the detection of ten samples was about US$2.5. The limit of detection was 0.05 µg L-1, and the recovery rate of CAP in milk ranged from 91.3% to 105.5%. The microfluidic system developed in this study exhibited considerable potential in the point-of-care testing (POCT) of CAP in milk.
Collapse
Affiliation(s)
- Mantong Zhao
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaolong Li
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yule Zhang
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuwen Wang
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bo Wang
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lulu Zheng
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Dawei Zhang
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Songlin Zhuang
- Engineering Research Centre of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
15
|
An Ultrasensitive Fluorescence Immunoassay Based on Magnetic Separation and Upconversion Nanoparticles as Labels for the Detection of Chloramphenicol in Animal-Derived Foods. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01820-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Pacheco-Fernández I, Allgaier-Díaz DW, Mastellone G, Cagliero C, Díaz DD, Pino V. Biopolymers in sorbent-based microextraction methods. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115839] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Li P, Yu J, Zhao K, Deng A, Li J. Efficient enhancement of electrochemiluminescence from tin disulfide quantum dots by hollow titanium dioxide spherical shell for highly sensitive detection of chloramphenicol. Biosens Bioelectron 2020; 147:111790. [DOI: 10.1016/j.bios.2019.111790] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 01/29/2023]
|
18
|
Zhou X, Shi J, Zhang J, Zhao K, Deng A, Li J. Multiple signal amplification chemiluminescence immunoassay for chloramphenicol using functionalized SiO 2 nanoparticles as probes and resin beads as carriers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117177. [PMID: 31176150 DOI: 10.1016/j.saa.2019.117177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/20/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
A novel, rapid and convenient competitive immunoassay for ultrasensitive detection of chloramphenicol residues in shrimp and honey was established combined with flow injection chemiluminescence. The carboxylic resin beads were used as solid phase carriers to load with more coating antigen due to their larger specific surface area and good biocompatibility. The surface of the silica dioxide nanoparticles was modified with aldehyde group to combine with more horseradish peroxidase and the chloramphenicol antibody. There was a competitive process between the chloramphenicol in solution and the immobilized coating antigen to combine with the limited binding site of antibody to form the immunocomplex. Silica dioxide nanoparticles played an important role in enhancing chemiluminescence signal, because the horseradish peroxidase on SiO2 effectively catalyzed the system of luminol-PIP-H2O2. Under optimal conditions, the chemiluminescence intensity decreased linearly with the logarithm of the chloramphenicol concentration in the range of 0.0001 to 100 ng mL-1 and the detection limit (3σ) was 0.033 pg mL-1. This immunosensor demonstrated acceptable stability, high specificity and reproducibility. The horseradish peroxidase-silica dioxide nanoparticle-chloramphenicol antibody complex successfully prepared in this article was firstly applied to the detection of chloramphenicol, and had extremely important meanings for the application of nanoparticles and enzymatic catalysis in the field of chemiluminescence.
Collapse
Affiliation(s)
- Xinchun Zhou
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Jing Shi
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Jing Zhang
- Shanghai Animal Disease Control Center, Shanghai 201103, China
| | - Kang Zhao
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
19
|
Fast extraction of chloramphenicol from marine sediments by using magnetic molecularly imprinted nanoparticles. Mikrochim Acta 2019; 186:428. [DOI: 10.1007/s00604-019-3548-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/24/2019] [Indexed: 11/25/2022]
|
20
|
Hong F, Lin X, Wu Y, Dong Y, Cao Y, Hu F, Gan N. Enzyme-free fluorometric assay for chloramphenicol based on double stirring bar-assisted dual signal amplification. Mikrochim Acta 2019; 186:150. [DOI: 10.1007/s00604-018-3148-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/04/2018] [Indexed: 12/23/2022]
|
21
|
Preparation of Ampicillin Surface Molecularly Imprinted Polymers for Its Selective Recognition of Ampicillin in Eggs Samples. Int J Anal Chem 2018; 2018:5897381. [PMID: 30581469 PMCID: PMC6276447 DOI: 10.1155/2018/5897381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/31/2018] [Indexed: 11/17/2022] Open
Abstract
Surface-imprinted polymers (MIPs) microspheres with the ability to specifically recognize water-soluble molecules were prepared using self-made monodisperse porous poly(chloromethylstyrene-co-divinylbenzene) beads as the solid-phase matrix and ampicillin (AMP) as the template molecule. MIPs were synthesized using different template molecule: monomer: crosslinker ratios and the optimum preparation ratio were obtained by measuring adsorption. The maximum equilibrium amount of adsorption by the MIPs reached 115.62 mg/g. Scatchard analysis indicated that the MIPs contained two types of recognition sites: specific and nonspecific. Based on the adsorption kinetics, adsorption equilibrium was reached after 30 minutes. Penicillin G, amoxicillin, and sulbactam acid were used as competitive molecules to research the selective adsorption capacity of the MIPs. The imprinted material was found to have good selectivity with selectivity coefficients for penicillin G, amoxicillin, and sulbactam acid of 5.74, 6.83, and 7.25, respectively. The MIPs were used as solid-phase extraction filler, resulting in successful enrichment and separation of ampicillin residue from egg samples. Standard addition recovery experiments revealed that recovery was good with recoveries from the spiked samples ranging from 91.5 to 94.9% and relative standard deviations from 3.6 to 4.2%. The solid-phase extraction MIPs microcolumn was reused 10 times, where it maintained a recovery rate of over 80%. This work presents a sensitive, fast, and convenient method for the determination of trace ampicillin in food samples.
Collapse
|
22
|
Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography-mass spectrometry combined with chemometrics. Food Res Int 2018; 108:413-422. [PMID: 29735074 DOI: 10.1016/j.foodres.2018.03.052] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 02/02/2023]
Abstract
Oolong tea is a typical semi-fermented tea and is famous for its unique aroma. The aim of this study was to compare the volatile compounds during manufacturing process to reveal the formation of aroma. In this paper, a method was developed based on head-space solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) combined with chemometrics to assess volatile profiles during manufacturing process (fresh leaves, sun-withered leaves, rocked leaves and leaves after de-enzyming). A total of 24 aroma compounds showing significant differences during manufacturing process were identified. Subsequently, according to these aroma compounds, principal component analysis and hierarchical cluster analysis showed that the four samples were clearly distinguished from each other, which suggested that the 24 identified volatile compounds can represent the changes of volatile compounds during the four steps. Additionally, sun-withering, rocking and de-enzyming can influence the variations of volatile compounds in different degree, and we found the changes of volatile compounds in withering step were less than other two manufacturing process, indicating that the characteristic volatile compounds of oolong tea might be mainly formed in rocking stage by biological reactions and de-enzyming stage through thermal chemical transformations rather than withering stage. This study suggested that HS-SPME/GC-MS combined with chemometrics methods is accurate, sensitive, fast and ideal for rapid routine analysis of the aroma compounds changes in oolong teas during manufacturing processing.
Collapse
|
23
|
Ding Y, Zhang X, Yin H, Meng Q, Zhao Y, Liu L, Wu Z, Xu H. Quantitative and Sensitive Detection of Chloramphenicol by Surface-Enhanced Raman Scattering. SENSORS 2017; 17:s17122962. [PMID: 29261161 PMCID: PMC5751667 DOI: 10.3390/s17122962] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 02/02/2023]
Abstract
We used surface-enhanced Raman scattering (SERS) for the quantitative and sensitive detection of chloramphenicol (CAP). Using 30 nm colloidal Au nanoparticles (NPs), a low detection limit for CAP of 10−8 M was obtained. The characteristic Raman peak of CAP centered at 1344 cm−1 was used for the rapid quantitative detection of CAP in three different types of CAP eye drops, and the accuracy of the measurement result was verified by high-performance liquid chromatography (HPLC). The experimental results reveal that the SERS technique based on colloidal Au NPs is accurate and sensitive, and can be used for the rapid detection of various antibiotics.
Collapse
Affiliation(s)
- Yufeng Ding
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
- College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xin Zhang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
- College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongjun Yin
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
- College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qingyun Meng
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
- College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yongmei Zhao
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
| | - Luo Liu
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhenglong Wu
- Analytical and Testing Center, Beijing Normal University, Beijing 100875, China.
| | - Haijun Xu
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
- College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
24
|
Xie J, Jiang H, Shen J, Peng T, Wang J, Yao K, Sun S, Shao B, Tang J. Design of Multifunctional Nanostructure for Ultrafast Extraction and Purification of Aflatoxins in Foodstuffs. Anal Chem 2017; 89:10556-10564. [PMID: 28866878 DOI: 10.1021/acs.analchem.7b02777] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aflatoxins (AFs) are a class of carcinogens, associated with liver cancers, that exist in foodstuffs. There are extremely low maximum limits of AFs in foodstuffs (0.025-20 μg·kg-1). Quick and sensitive detection of such low concentration of AFs in foodstuffs is dominated by the efficiency and selectivity of the AF enrichment process, which is extremely challenging although substantial efforts have been made in recent decades. Here we design and synthesize a multilayer nanoarchitecture composed of a broad-spectrum aflatoxin monoclonal antibody shell, chitosan middle layer, and magnetic bead core (denoted AF-mAb/CTS/Fe3O4). The efficiency of AF-mAb/CTS/Fe3O4 in extracting AFs has been found to be more than 60 times higher than both conventional immunoaffinity chromatography and solid-phase extraction. Furthermore, the nanocomposite displays excellent selectivity and good reusability as well as outstanding efficiency. When coupled to ultraperformance liquid chromatography-tandem quadrupole mass spectrometry, this new nanoarchitecture enables us to probe six AFs at concentrations as low as 0.003 μg·kg-1 in foodstuffs with free matrix effects, which is nearly 10 times smaller than the regulated maximum tolerated does. It is believed that the new nanoarchitecture will provide an efficient and fast pathway to detect AFs in foodstuffs to protect human being from some critical liver cancers.
Collapse
Affiliation(s)
- Jie Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Haiyang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Tao Peng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Jianyi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Kai Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Shujuan Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Bing Shao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | - Junwang Tang
- Department of Chemical Engineering, University College London , Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
25
|
Xie T, Liao Z, Lei H, Fang X, Wang J, Zhong Q. Antibacterial activity of food-grade chitosan against Vibrio parahaemolyticus biofilms. Microb Pathog 2017; 110:291-297. [DOI: 10.1016/j.micpath.2017.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 01/01/2023]
|
26
|
Zhao X, Zhang Q, Chen H, Liu G, Bai W. Highly Sensitive Molecularly Imprinted Sensor Based on Platinum Thin-film Microelectrode for Detection of Chloramphenicol in Food Samples. ELECTROANAL 2017. [DOI: 10.1002/elan.201700164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaojuan Zhao
- College of Light Industry and Food Science; Zhongkai University of Agriculture and Engineering; Guangzhou 510225 P. R. China
- Key Laboratory of Traditional Cantonese Food Processing and Safety Control; Guangzhou 510225 P. R. China
| | - Qimei Zhang
- College of Light Industry and Food Science; Zhongkai University of Agriculture and Engineering; Guangzhou 510225 P. R. China
- Shenzhen Academy of Metrology and Quality Inspection; Shenzhen 518109 P. R. China
| | - Haiguang Chen
- College of Light Industry and Food Science; Zhongkai University of Agriculture and Engineering; Guangzhou 510225 P. R. China
- Key Laboratory of Traditional Cantonese Food Processing and Safety Control; Guangzhou 510225 P. R. China
| | - Gongliang Liu
- College of Light Industry and Food Science; Zhongkai University of Agriculture and Engineering; Guangzhou 510225 P. R. China
- Key Laboratory of Traditional Cantonese Food Processing and Safety Control; Guangzhou 510225 P. R. China
| | - Weidong Bai
- College of Light Industry and Food Science; Zhongkai University of Agriculture and Engineering; Guangzhou 510225 P. R. China
- Key Laboratory of Traditional Cantonese Food Processing and Safety Control; Guangzhou 510225 P. R. China
| |
Collapse
|
27
|
Zhao F, She Y, Zhang C, Wang S, Du X, Jin F, Jin M, Shao H, Zheng L, Wang J. Selective Determination of Chloramphenicol in Milk Samples by the Solid-Phase Extraction Based on Dummy Molecularly Imprinted Polymer. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0810-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
A triple-amplification SPR electrochemiluminescence assay for chloramphenicol based on polymer enzyme-linked nanotracers and exonuclease-assisted target recycling. Biosens Bioelectron 2016; 86:477-483. [PMID: 27434234 DOI: 10.1016/j.bios.2016.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 11/23/2022]
Abstract
The present study aimed to explore a novel triple-amplification electrochemiluminescence (ECL) assay for detecting of chloramphenicol (CAP). This strategy was based on single-stranded DNA-binding protein (SSB) and horseradish peroxidase (HRP) enzyme-linked polymer (EnVision reagent, EV) labeled on Au nanoparticles (EV-Au-SSB) as nanotracer and exonuclease-assisted target recycling. The composite probes were prepared via immunoreactions between the CdS nanocrystal (CdS NC)-functionalized partial complementary DNA and aptamer (CdSNCs/Apt-ssDNA1) as capture probes, and EV-Au-SSB as nanotracer. When the composite probe solution co-existed with CAP and Exo I, the aptamer on the capture probes preferentially combined with CAP, and then CAP-Apt and nanotracer complex were released into the solution. Subsequently, Exo I in the solution could further digest the CAP-Apt from the 3'-end of the aptamer and release CAP, which could participate in further reaction with the probes. It was worth mentioning that EV contained a large number of HRPs on its dendritic chain. In the EV-Au-SSB, Au could enhance ECL intensity of CdS NCs by surface plasmon resonance. What's more, HRPs on EV could catalyze the reaction of H2O2, which could obviously enhance ECL intensity of CdS NCs. This study demonstrated excellent performance of the triple-amplification ECL assay, which makes this aptasensor system suitable and promising for the practical application of CAP residues in fish samples. Moreover, the assay might provide a promising avenue to develop efficient aptasensors to determine small-molecule harmful substances in environmental monitoring and food safety.
Collapse
|
29
|
A homogeneous and "off-on" fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes. Anal Chim Acta 2016; 929:49-55. [PMID: 27251948 DOI: 10.1016/j.aca.2016.04.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 04/26/2016] [Accepted: 04/30/2016] [Indexed: 11/21/2022]
Abstract
In this work, a novel homogeneous and signal "off-on" aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in "off" state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the "off" signal of SSB/L-QD tracer into "on" state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability.
Collapse
|
30
|
Tolmacheva VV, Apyari VV, Kochuk EV, Dmitrienko SG. Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of organic compounds. JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1134/s1061934816040079] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Miao YB, Ren HX, Gan N, Cao Y, Li T, Chen Y. Fluorescent aptasensor for chloramphenicol detection using DIL-encapsulated liposome as nanotracer. Biosens Bioelectron 2016; 81:454-459. [PMID: 27015148 DOI: 10.1016/j.bios.2016.03.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/12/2016] [Accepted: 03/15/2016] [Indexed: 01/24/2023]
Abstract
A novel fluorescence aptasensor was successfully developed to respond to chloramphenicol (CAP) in food based on magnetic aptamer-liposome vesicle probe. In order to fabricate it, aptamer labeled on functionalized magnetic beads (MB) was firstly employed as capture adsorbent (MB-Apt), then SSB (single-stranded DNA binding protein) and DIL (1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanineperchlorate) coimmobilized liposomes (SSB/DIL-Lip) was employed as vesicle signal tracer. The composite vesicle probe is formed between SSB/DIL-Lip and MB-Apt based on SSB's specific recognition towards aptamer on vesicle signal tracer. Upon the vesicle probe solution reacted with CAP, the aptamer on the magnetic beads preferentially bounded with CAP, and then released SSB/DIL-Lip vesicle signal tracer in the supernatant after magnetic separation. The released tracer can emit fluorescence which was correspondence with the concentration of the analyte. At the optimum conditions, the aptasensor exhibited a good linear response for CAP detection in the range of 0.003-10nM with a detection limit of 1pM. Importantly, the methodology was further validated for analyzing CAP in fish samples with consistent results obtained by ELISA kit, thus providing a promising approach for quantitative monitoring of CAP and significant anti-interference ability in food safety.
Collapse
Affiliation(s)
- Yang-Bao Miao
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Hong-Xia Ren
- Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Ning Gan
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Yuting Cao
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Tianhua Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yijin Chen
- Faculty of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210000, PR China
| |
Collapse
|
32
|
Abnous K, Danesh NM, Ramezani M, Emrani AS, Taghdisi SM. A novel colorimetric sandwich aptasensor based on an indirect competitive enzyme-free method for ultrasensitive detection of chloramphenicol. Biosens Bioelectron 2015; 78:80-86. [PMID: 26599477 DOI: 10.1016/j.bios.2015.11.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/29/2015] [Accepted: 11/10/2015] [Indexed: 01/10/2023]
Abstract
Analytical methods for detection and quantitation of chloramphenicol in blood serum and foodstuffs arse highly in demand. In this study, a colorimetric sandwich aptamer-based sensor (aptasensor) was fabricated for sensitive and selective detection of chloramphenicol, based on an indirect competitive enzyme-free assay using gold nanoparticles (AuNPs), biotin and streptavidin. The designed aptasensor acquires characteristics of AuNPs, including large surface area and unique optical properties, and strong interaction of biotin with streptavidin. In the absence of chloramphenicol, the sandwich structure of aptasensor forms, leading to the observation of sharp red color. In the presence of target, functionalized AuNPs could not bind to 96-well plates, resulting in a faint red color. The fabricated colorimetric aptasensor exhibited high selectivity toward chloramphenicol with a limit of detection as low as 451 pM. Moreover, the developed colorimetric aptasensor was successfully used to detect chloramphenicol in milk and serum with LODs of 697 and 601 pM, respectively.
Collapse
Affiliation(s)
- Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Noor Mohammad Danesh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Research Institute of Sciences and New Technology, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Yan W, Yang L, Zhuang H, Wu H, Zhang J. Engineered "hot" core-shell nanostructures for patterned detection of chloramphenicol. Biosens Bioelectron 2015; 78:67-72. [PMID: 26594888 DOI: 10.1016/j.bios.2015.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/25/2015] [Accepted: 11/02/2015] [Indexed: 01/16/2023]
Abstract
In this study, we described a novel method for highly sensitive and specific detection of chloramphenicol (CAP) based on engineered "hot" Au core-Ag shell nanostructures (Au@Ag NSs). Cy5-labeled DNA aptamer was embedded between the Au and Ag layers as a signal generator and target-recognition element, to fabricate uniform Au@Ag NSs with unexpected strong and stable SERS signals. The presented CAP can specifically bind to the DNA aptamer by forming an aptamer-CAP conjugate, and cause greatly decreased SERS signals of Au@Ag NSs. By using this method, we were able to detect as low as 0.19 pg mL(-1) of CAP with high selectivity, which is much lower than those previously reported biosensors. Compared with the other SERS sensors that attached a dye in the outer layer of nanoparticles, this method exhibits excellent sensitivity and has the potential to significantly improve stability and reproducibility of SERS-based detection techniques.
Collapse
Affiliation(s)
- Wenjing Yan
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Longping Yang
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Zhuang
- Quality and Safety Assessment Research Unit, Agricultural Research Service, USDA, Athens, GA 30605, USA
| | - Haizhou Wu
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianhao Zhang
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
34
|
An aptamer-based colorimetric assay for chloramphenicol using a polymeric HRP-antibody conjugate for signal amplification. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1632-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Amjadi M, Jalili R, Manzoori JL. A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots. LUMINESCENCE 2015; 31:633-9. [DOI: 10.1002/bio.3003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/22/2015] [Accepted: 07/11/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Mohammad Amjadi
- Department of Analytical Chemistry; Faculty of Chemistry, University of Tabriz; Tabriz 5166616471 Iran
| | - Roghayeh Jalili
- Department of Analytical Chemistry; Faculty of Chemistry, University of Tabriz; Tabriz 5166616471 Iran
| | - Jamshid L. Manzoori
- Department of Analytical Chemistry; Faculty of Chemistry, University of Tabriz; Tabriz 5166616471 Iran
| |
Collapse
|
36
|
Wu S, Zhang H, Shi Z, Duan N, Fang C, Dai S, Wang Z. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.10.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Que X, Tang D, Xia B, Lu M, Tang D. Gold nanocatalyst-based immunosensing strategy accompanying catalytic reduction of 4-nitrophenol for sensitive monitoring of chloramphenicol residue. Anal Chim Acta 2014; 830:42-8. [DOI: 10.1016/j.aca.2014.04.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/21/2014] [Accepted: 04/25/2014] [Indexed: 01/22/2023]
|
38
|
Multivariate Analysis Based on GC-MS Fingerprint and Volatile Composition for the Quality Evaluation of Pu-Erh Green Tea. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9900-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|