1
|
Sha G, Wu Z, Chen T, Zhang G, Shen J, Zhao X, Wang L. Mechanisms for more efficient antibiotics and antibiotic resistance genes removal during industrialized treatment of over 200 tons of tylosin and spectinomycin mycelial dregs by integrated meta-omics. BIORESOURCE TECHNOLOGY 2024; 401:130715. [PMID: 38641304 DOI: 10.1016/j.biortech.2024.130715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
To mitigate the environmental risks posed by the accumulation of antibiotic mycelial dregs (AMDs), this study first attempted over 200 tons of mass production fermentation (MP) using tylosin and spectinomycin mycelial dregs alongside pilot-scale fermentation (PS) for comparison, utilizing the integrated-omics and qPCR approaches. Co-fermentation results showed that both antibiotics were effectively removed in all treatments, with an average removal rate of 92%. Antibiotic resistance gene (ARG)-related metabolic pathways showed that rapid degradation of antibiotics was associated with enzymes that inactivate macrolides and aminoglycosides (e.g., K06979, K07027, K05593). Interestingly, MP fermentations with optimized conditions had more efficient ARGs removal because homogenization permitted faster microbial succession, with more stable removal of antibiotic resistant bacteria and mobile genetic elements. Moreover, Bacillus reached 75% and secreted antioxidant enzymes that might inhibit horizontal gene transfer of ARGs. The findings confirmed the advantages of MP fermentation and provided a scientific basis for other AMDs.
Collapse
Affiliation(s)
- Guomeng Sha
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Zhengwen Wu
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Tong Chen
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - Guangen Zhang
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - Jianguo Shen
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Sha G, Bi W, Zhang L, Chen T, Li X, Chen G, Wang L. Dynamics and removal mechanisms of antibiotic and antibiotic resistance genes during the fermentation process of spectinomycin mycelial dregs: An integrated meta-omics study. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126822. [PMID: 34396972 DOI: 10.1016/j.jhazmat.2021.126822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic mycelial dregs (AMDs) have been listed as industrial hazardous wastes. With the aim of reducing the environmental risk, the integrated-omics and qPCR approaches were used to reveal the dynamics and removal mechanisms of antibiotic and antibiotic resistance genes (ARGs) during the fermentation of different spectinomycin mycelial dregs (SMDs). The results showed that the removal efficiency of antibiotic in the fermentation of high moisture SMDs reached up to 98%. The high abundance of aadA1 gene encoded by Streptomyces, Lactobacillus, and Pseudomonas was associated with the efficient degradation of spectinomycin, and the inactivating enzymes secreted by degradative bacteria were identified. Furthermore, the dominant microbiota was impacted by moisture content significantly under high temperature environments. In the fermentation of low moisture SMDs, Saccharopolyspora was the dominant microbiota which secreted S8 endopeptidase, M14, M15, S10, S13 carboxypeptidases, M1, M28, S15 aminopeptidases, and antioxidant enzymes, while in the fermentation of high moisture SMDs, Bacillus and Cerasibacillus were dominant genera which mainly secreted S8 endopeptidase and antioxidant enzymes. The abundance of ARGs and mobile genetic elements decreased significantly at thermophilic phase, with maximum drops of 93.7% and 99.9%, respectively. Maintaining moisture content below 30% at the end phase could prevent the transmission of ARGs effectively.
Collapse
Affiliation(s)
- Guomeng Sha
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Wenhui Bi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Faculty of Food Science and Engineering, Shandong Agricultural and Engineering University, Jinan, Shandong 250100, China; Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Lili Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tong Chen
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - Xin Li
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|