1
|
Du RZ, Zhang Y, Bian Y, Yang CY, Feng XS, He ZW. Rhodamine and related substances in food: Recent updates on pretreatment and analysis methods. Food Chem 2024; 459:140384. [PMID: 38996634 DOI: 10.1016/j.foodchem.2024.140384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/02/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Rhodamine, a colorant prohibited in various consumer products due to its demonstrated carcinogenic, mutagenic, and toxic properties, necessitates the development of a straightforward, efficient, sensitive, environmentally friendly, and cost-effective analytical method. This review provides an overview of recent advancements in the pretreatment and determination techniques for rhodamine across diverse sample matrices since 2017. Sample preparation methods encompass both commonly used pretreatment techniques such as filtration, centrifugation, solvent extraction, and cloud point extraction, as well as innovative approaches including solid phase extraction, dispersive liquid-liquid microextraction, hollow fiber liquid phase microextraction, magnetic solid phase extraction, and matrix solid phase dispersion. The analytical techniques encompass high performance liquid chromatography, surface-enhanced Raman scattering, and sensor-based methods. Furthermore, a comprehensive examination is conducted to offer insights for future research on rhodamine regarding the advantages, disadvantages, and advancements in various pretreatment and determination methodologies.
Collapse
Affiliation(s)
- Rong-Zhu Du
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Chun-Yu Yang
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Zhen-Wei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
2
|
Yu W, Wu R, Zhang L, Pan Y, Ling J, Yang D, Qu J, Tao Z, Meng R, Shen Y, Yu J, Lin N, Wang B, Jin H, Zhao M, Chen Y. Identification of key factors affecting neonicotinoid residues in crops and risk of dietary exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123489. [PMID: 38311155 DOI: 10.1016/j.envpol.2024.123489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Neonicotinoids, widely used on farmland, are ubiquitous in food; however, their distribution among various crops and associated exposure risks at the provincial level in China remain unclear. We collected 19 types of crop samples (fruits, vegetables, and tea) from farmland in nine prefectural cities in Zhejiang Province, China. We analyzed nine commonly used neonicotinoids in the edible portions of these crops. A notable detection rate (42.1 %-82.9 %) and high residual neonicotinoid concentrations (278 ± 357 ng/g) were observed. Tea exhibited the highest residue, followed by fruits, and vegetables showed the lowest (P < 0.05). Neonicotinoid ratios in crops to soil (R_C/S) and soil to water (R_S/W) were defined to discern insecticide distribution across different environments. Increased water solubility leads to increased migration of neonicotinoids (R_S/W) from agricultural soils to water through runoff, thereby increasing the relative contribution of nitenpyram and dinotefuran in water. In comparison with other studied compounds, all crops demonstrated the strongest soil uptake of thiamethoxam, denoted by the highest R_C/S value. Elevated R_C/S values in tea, pickled cabbage, and celery suggest increased susceptibility of these crops to neonicotinoid absorption from the soil (P < 0.05). Estimated dietary intake for teenagers, adults and elders was 8.9 ± 0.5, 8.9 ± 0.6, and 8.8 ± 0.3 μg/kg/d, respectively, below the reference dose (57 μg/kg/d). Teenagers, compared to adults and elders, exhibited significantly higher neonicotinoid exposure through fruit consumption, emphasizing the need for increased attention to neonicotinoid exposure among vulnerable populations.
Collapse
Affiliation(s)
- Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Ruxin Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Li Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Yangzhong Pan
- Management Center of Environmental Protection and Security, Changxing Chuangtong Power Supply Co.,Ltd., Huzhou, Zhejiang, 313100, China
| | - Jun Ling
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Dan Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Jiajia Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Zhen Tao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Ruirui Meng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Yuexing Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Jingtong Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Nan Lin
- Department of Environmental Health School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Bin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China; Institute of Reproductive and Child Health, School of Public Health Peking University, Beijing, 100191, China; Key Laboratory of Reproductive Health, National Health and Family Planning Commission of the People's Republic of China, Beijing, 100191, China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China.
| |
Collapse
|
3
|
Yin P, Dong Y, Zhou X, Wang Q, Li S, Wang C, Hao L, Wang Z, Wu Q. Synthesis of phosphate-functionalized magnetic porous organic polymer: A sorbent for sensitive determination of neonicotinoid insecticides in water and lemon juice. J Chromatogr A 2023; 1705:464221. [PMID: 37481862 DOI: 10.1016/j.chroma.2023.464221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
There is an urgent need to prepare advanced functional materials for extraction and enrichment of trace organic pollutants from different samples. In this work, two novel phosphate-functionalized porous organic polymers (DBP-POP and DPP-POP) were synthesized for the first time. Compared with phosphate-free counterpart, both phosphate-functionalized POPs showed excellent adsorption performance for the neonicotinoids due to the hydrogen bonding, π-π interaction and hydrophobic interaction. For ease of separating the sorbent from solution, magnetic DBP-POP (M-DBP-POP) was further prepared as sorbent to extract neonicotinoids from environmental water and lemon juice samples prior to their determination by high performance liquid chromatography-ultraviolet detection. Under optimal conditions, the detection limits (S/N = 3) of the method were 0.01-0.08 ng mL-1 for water and 0.03-0.10 ng mL-1 for lemon juice. The recoveries were in the range of 80.0% to 113.0% with relative standard deviation less than 10.6%. This work demonstrated the feasibility of phosphate-functionalized POPs for adsorption applications.
Collapse
Affiliation(s)
- Peiying Yin
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Yanli Dong
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Xin Zhou
- Department of Science & Technology, Hebei Agricultural University, Huanghua, 061100, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Shuofeng Li
- College of Science, Hebei Agricultural University, Baoding, 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding, 071001, China.
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding, 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
6
|
Zeolite H-Beta as a Dispersive Solid-Phase Extraction Sorbent for the Determination of Eight Neonicotinoid Insecticides Using Ultra-High-Performance Liquid Chromatography—Tandem Mass Spectrometry. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In this study, a dispersive solid-phase extraction (DSPE) pretreatment procedure using zeolite H-Beta as a sorbent was exploited for the determination of eight neonicotinoids in bottled water and honey products based on ultra-high-performance liquid chromatography–tandem mass spectrometry analysis. The zeolite H-Beta was demonstrated to be a suitable sorbent for neonicotinoid insecticides, even after 10 recycles of reuse. The method performance was evaluated by the linearity (R2 ≥ 0.998), recovery (71–108%), precision (0.1–7.8%), limit of detection (0.05–0.1 ng/mL) and limit of quantification (0.1–0.2 ng/mL), which suggested excellent stability and high sensitivity with the use of the DSPE procedure. The method was further successfully applied in the test of neonicotinoid insecticides in 34 samples. Zeolite H-Beta shows promise as an efficient and practical material for monitoring neonicotinoid insecticides in bottled water and multiplex honey matrices.
Collapse
|
7
|
Soylak M, Ozdemir B, Yilmaz E. An environmentally friendly and novel amine-based liquid phase microextraction of quercetin in food samples prior to its determination by UV-vis spectrophotometry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118806. [PMID: 32829158 DOI: 10.1016/j.saa.2020.118806] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
A novel and environmentally-friendly method, which includes determination of trace amounts of quercetin in samples by using UV-vis spectrophotometry after enrichment with amine-based liquid phase microextraction (LPME), has been developed. As extraction solvent, N,N-dimethyl-n-octylamine has been used and the quercetin concentration in extraction phase was determined by UV-vis spectrophotometry at 382.5 nm. Important analytical parameters such as pH, extraction solvent type and volume, sample volume, extraction time were optimized by the method. Quercetin in the sample solution was extracted to 200 μL of N,N-dimethyl-n-octylamine phase at pH 4.0. The detection limit (LOD) and the quantitation limit (LOQ) values for quercetin were calculated as 0.07 μg·mL-1 and 0.24 μg·mL-1, respectively. Accuracy studies for the food samples was carried out by addition and recovery experiments. The developed method has been successfully applied to different food samples including spinach, green pepper, red onion and dill weed.
Collapse
Affiliation(s)
- Mustafa Soylak
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey; Technology Research and Application Center (TAUM), Erciyes University, 38039 Kayseri, Turkey.
| | - Bircan Ozdemir
- Erciyes University, Faculty of Sciences, Department of Chemistry, 38039 Kayseri, Turkey
| | - Erkan Yilmaz
- Technology Research and Application Center (TAUM), Erciyes University, 38039 Kayseri, Turkey; Erciyes University, Faculty of Pharmacy, Department of Analytical Chemistry, 38039 Kayseri, Turkey; ERNAM Erciyes University, Nanotechnology Application and Research Center, 38039 Kayseri, Turkey
| |
Collapse
|