1
|
Justo-Tirado M, Pérez-Herráez I, Escorihuela J, Arenal R, Zaballos-García E, Pérez-Prieto J. Harnessing sustainable nanoclusters for sensitive optical detection of tetracyclines and the underlying mechanism. NANOSCALE ADVANCES 2024:d4na00637b. [PMID: 39345791 PMCID: PMC11425532 DOI: 10.1039/d4na00637b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024]
Abstract
Simple and rapid sensing methods for the detection of antibiotics in drinks and foods are highly desirable due to the presence of these drugs in food products, as a consequence of extensive abuse of antibiotics in livestock production. In this study, we report a facile synthesis strategy of gold nanoclusters (AuNCs) passivated with N-acetyl-l-cysteine (AuNC@NAC). This nanocluster exhibits a fluorescence emission peak at 700 nm, which gradually decreases at increasing concentrations of antibiotics, such as tetracyclines. The limit of detection (LOD) was determined to be 0.8 ppm with a linear range of 0.1-140 μM (0.04-62 ppm). This method showcased exceptional selectivity in the detection of tetracyclines compared to anions, metallic cations and amino acids. The underlying mechanism has been elucidated, and the fluorescence quenching was found to be a combination of dynamic and static quenching mechanisms, with photoinduced electron transfer (PET) identified as the primary process for dynamic quenching.
Collapse
Affiliation(s)
- Miguel Justo-Tirado
- Instituto de Ciencia Molecular (ICMol), Universitat de València Catedrático José Beltrán 2 Paterna Valencia Spain
| | - Irene Pérez-Herráez
- Instituto de Ciencia Molecular (ICMol), Universitat de València Catedrático José Beltrán 2 Paterna Valencia Spain
| | - Jorge Escorihuela
- Departamento de Química Orgánica, University de València Av. Vicent Andres Estelles s/n Burjassot Spain
| | - Raúl Arenal
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza 50009 Zaragoza Spain
- Laboratorio de Microscopias Avanzadas (LMA), U. Zaragoza C/Mariano Esquillor s/n 50018 Zaragoza Spain
- ARAID Foundation 50018 Zaragoza Spain
| | - Elena Zaballos-García
- Departamento de Química Orgánica, University de València Av. Vicent Andres Estelles s/n Burjassot Spain
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Universitat de València Catedrático José Beltrán 2 Paterna Valencia Spain
| |
Collapse
|
2
|
He Y, Li Y, Wang H, Luo S, Yu H. Construction of a stable fluorescent sensor based on CsPbBr 3/CdS core/shell quantum dots for selective and sensitive detection of tetracycline in ethanol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2267-2277. [PMID: 38525547 DOI: 10.1039/d4ay00032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The weakly bound organic ligand shells around perovskite quantum dots (QDs) are easily decomposed and cannot provide sufficient stability in polar solvents, which greatly obstructs their applications in sensing. Herein, a fluorescent sensor based on CsPbBr3/CdS core/shell QDs was developed for the detection of tetracycline (TC) in the polar solvent-ethanol. Pristine CsPbBr3 QDs were treated with cadmium diethyldithiocarbamate (Cd(DDTC)2) to form a shell on the surface at 110 °C, while extra oleylammonium bromide (OAmBr) was added to inhibit the phase transformation of CsPbBr3 into a Cs4PbBr6 impurity phase during high-temperature processing. And finally CsPbBr3/CdS core/shell QDs were successfully synthesized. The capping with the CdS inorganic shell remediated surface defects and improved the stability in ethanol without affecting the emission properties of the parent CsPbBr3 QDs. The results showed that the fluorescent sensor detected TC in the range of 0.05-25 μM with a low detection limit of 22.6 nM, whereas it had high selectivity and anti-interference ability for TC. And the fluorescence quenching mechanism of the sensor was mainly photoinduced electron transfer between TC and CsPbBr3/CdS QDs. Our research provides a unique way to improve the stability of perovskite QDs in polar solvents and applications in fluorescence detection.
Collapse
Affiliation(s)
- Yang He
- The National Engineering Research Center of Fiber Optic Sensing Technology and Network, Wuhan University of Technology, Wuhan 430070, China.
| | - Yangjie Li
- The National Engineering Research Center of Fiber Optic Sensing Technology and Network, Wuhan University of Technology, Wuhan 430070, China.
| | - Han Wang
- The National Engineering Research Center of Fiber Optic Sensing Technology and Network, Wuhan University of Technology, Wuhan 430070, China.
| | - Site Luo
- The National Engineering Research Center of Fiber Optic Sensing Technology and Network, Wuhan University of Technology, Wuhan 430070, China.
| | - Haihu Yu
- The National Engineering Research Center of Fiber Optic Sensing Technology and Network, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
3
|
Tang X, Lu M, Wang J, Man S, Peng W, Ma L. Recent Advances of DNA-Templated Metal Nanoclusters for Food Safety Detection: From Synthesis, Applications, Challenges, and Beyond. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5542-5554. [PMID: 38377578 DOI: 10.1021/acs.jafc.3c09621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Food safety concerns have become a significant threat to human health and well-being, catching global attention in recent years. As a result, it is imperative to research conceptually novel biosensing and effective techniques for food matrices detection. Currently, DNA-templated metal nanoclusters (DNA-MNCs) are considered as one of the most promising nanomaterials due to their excellent properties in biosensing. While DNA-MNCs have garnered increasing interest, the reviews of design strategies, applications, and futuristic prospects for biosensing have been hardly found especially in food safety. The synthesis of DNA-MNCs and their use as biosensing materials in food contamination detection, including pathogenic bacteria, toxins, heavy metals, residues of pesticides, and others were comprehensively reviewed. In addition, we summarize the properties of DNA-MNCs briefly and discuss the challenges and future trends. The application of DNA-MNCs powered biosensing has been demonstrated and actively studied, which is a promising paradigm for food safety testing that can supplement or even replace current existing methods. Despite the challenges of difficulty regulating accurately, poor stability, low quantum yield, and difficult commercial transformation, the application prospects of DNA-MNCs biosensors are promising. This review aims to provide insights and directions for the future development of DNA-MNCs based food detection technology.
Collapse
Affiliation(s)
- Xiaoqin Tang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Minghui Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jiajing Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Weipan Peng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Chen S, Wang J, Shang Z, Ding Y, Hu A. An electronic tongue based on conjugated polymers for the discrimination and quantitative detection of tetracyclines. Analyst 2023; 148:5152-5156. [PMID: 37721048 DOI: 10.1039/d3an01213a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
A fluorescent sensor array has been developed based on conjugated polymers (CPs) having six different skeletons for the detection of tetracyclines (TCs), which are known as environmental pollutants. CPs were synthesized from confined nanoreactors in a controlled manner. The fluorescent response occurs through the fluorescence resonance energy transfer (FRET) effect. By utilizing linear discriminant analysis (LDA), effective differentiation of TCs was accomplished with a very low detection concentration (66 nM). Moreover, the sensor array exhibited a highly sensitive ability to quantitatively distinguish different concentrations of TCs. Finally, the sensor array's potential for detecting TCs in aqueous solutions has been successfully demonstrated, widening its applications in practical environments. With simple preparation process, a low cost of detection and high sensitivity, the experimental results indicate that the CP-based sensor array is a promising platform for the sensitive and quantitative detection of TCs, and provides a good reference for future scientific research.
Collapse
Affiliation(s)
- Shiyong Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jie Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhikun Shang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
5
|
Aleem A, Akhtar B, Muhammad F, Qureshi AS, Rahman SU. Development of a Lateral-Flow Immunochromatographic Strip for the Detection of Oxytetracycline Residues in Biological Fluids. ACS OMEGA 2023; 8:36237-36244. [PMID: 37810669 PMCID: PMC10552086 DOI: 10.1021/acsomega.3c04759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
Oxytetracycline (OTC) is extensively used in veterinary medicine and for growth promotion around the globe. The indiscriminate use of OTC in food-producing animals leaves residues in animal products. The presence of these residues in animal products causes economic losses and harmful effects on consumers. Different regulatory bodies set maximum residue limits (MRLs) for different tetracyclines. To avoid harmful effects, there is a need for a simple, fast, and economical method for the screening of animal products. In this study, a fast, economical, and user-friendly lateral-flow immunochromatographic (LFIC) assay based on gold nanoparticles (AuNPs) was developed to detect the presence of OTC residues in biological fluids. AuNPs provided visual results as red lines in 6-15 min. Polyclonal rabbit IgG antibodies were produced using the immunogen of OTC. These antibodies were purified by the combined ammonium sulfate-octanoic acid precipitation method. Antibodies were conjugated to AuNPs as recognition biomolecules. A LFIC strip was optimized using borate buffer spiked with different concentrations of the OTC. The visual limit of detection (LOD) in different biological samples (milk, serum, and urine) was determined using samples spiked with OTC. The LOD was found to be 15 μg/L, which is very low from the MRL (100 μg/L) set by different regulatory authorities. This LFIC strip can be used to detect OTC residues in biological fluids for point-of-care testing (POCT). These strips are easy to use, cost-effective, and portable and provide quick results without the use of laboratory instruments.
Collapse
Affiliation(s)
- Abdul Aleem
- Institute
of Physiology and Pharmacology, University
of Agriculture, Faisalabad 38000, Pakistan
| | - Bushra Akhtar
- Department
of Pharmacy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Faqir Muhammad
- Department
of Biosciences, Faculty of Veterinary Science, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Anas Sarwar Qureshi
- Department
of Anatomy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sajjad-ur Rahman
- Institute
of Microbiology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
6
|
Wu NN, Chen LG, Wang HB. A Sensitive Fluorescence Sensor for Tetracycline Determination Based on Adenine Thymine-Rich Single-Stranded DNA-Templated Copper Nanoclusters. APPLIED SPECTROSCOPY 2023; 77:1206-1213. [PMID: 37545405 DOI: 10.1177/00037028231192124] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A sensitive fluorescent sensor has been developed for the determination of tetracycline (TC) using adenine thymine (AT)-rich single-stranded DNA (ssDNA) templated copper nanoclusters (CuNCs) as a fluorescent probe. Fluorescent ssDNA-CuNCs were synthesized by employing AT-rich ssDNA as templates and ascorbic acid as reducing agents through a facile one-step method. The as-prepared ssDNA-CuNCs exhibited strong fluorescence with a large Stokes shift (240 nm) and stable fluorescence emission. In the presence of TC, the fluorescent intensity of ssDNA-CuNCs was obviously decreased through the inner filter effect, due to the spectral overlapping between ssDNA-CuNCs and TC. Under the optimal conditions, the strategy exhibited sensitive detection of TC with a linear range from 2 nM to 30 μM and with a limit of detection of 0.5 nM. Furthermore, the sensor was successfully applied for the detection of TC in milk samples. Therefore, it provided a simple, rapid, and label-free fluorescent method for TC detection.
Collapse
Affiliation(s)
- Ning-Ning Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lin-Ge Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
7
|
Duong DST, Jang CH. Optical sensing of tetracycline concentration using a liquid crystal-based platform targeting the chelating properties of tetracycline. Anal Chim Acta 2023; 1270:341459. [PMID: 37311612 DOI: 10.1016/j.aca.2023.341459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
In this study, a liquid crystal (LC)-based assay for the real-time detection of tetracycline (Tc) was developed. The sensor was constructed by implementing an LC-based platform that utilized the chelating properties of Tc to target Tc metal ions. This design enabled Tc-dependent induction of changes in the optical image of the LC; these modifications could then be observed in real-time with the naked eye. The performance of the sensor in detecting Tc was investigated with various metal ions to identify the most effective metal ion for Tc detection. In addition, the selectivity of the sensor was evaluated using different antibiotics. A correlation between Tc concentration and the optical intensity of the LC optical images was established, which enabled the quantification of Tc concentrations. The proposed method can detect Tc concentrations with a detection limit as low as 2.67 pM. Tests were conducted on milk, honey, and serum samples, which demonstrated that the proposed assay is highly accurate and reliable. The high sensitivity and selectivity of the proposed method make it a promising tool for real-time Tc detection, with potential applications in fields ranging from biomedical research to agriculture.
Collapse
Affiliation(s)
- Duong Song Thai Duong
- Department of Chemistry, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-City, Gyeonggi-Do, 461-701, South Korea.
| | - Chang-Hyun Jang
- Department of Chemistry, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-City, Gyeonggi-Do, 461-701, South Korea.
| |
Collapse
|
8
|
Fangyu Zhou, Chen H, Fan T, Guo Z, Liu F. Fluorescence turn-off strategy for sensitive detection of DNA methyltransferase activity based on DNA-templated gold nanoclusters. Heliyon 2023; 9:e17724. [PMID: 37449164 PMCID: PMC10336507 DOI: 10.1016/j.heliyon.2023.e17724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
DNA methylation results in a variety of human diseases and the DNA methylation process is mediated by DNA methyltransferases, which have therefore become potential targets for disease treatment. In this study, a turn-off nanogold biological probe system was successfully created for determining the activity of DNA methyltransferases (M.SssI MTase). A dumbbell-shaped DNA probe with a site-recognizable region of M. SssI MTase and a fluorescent signal probe based on a DNA-templated gold nanocluster (DNA-AuNC) probe combined for the quantitative detection of M. SssI MTase. This dumbbell-shaped DNA probe was methylated by M. SssI MTase, and the dumbbell-shaped DNA probe with a methyl group was recognized by an endonuclease (GlaI) and cleaved into hairpin DNA. The dGTP was added to the 3'-OH terminus of hairpin DNA fragments in the presence of terminal deoxynucleotidyl transferase (TdT), and the hairpin DNA was extended with a G-rich sequence that can be used as an inactivation probe. When the inactivation probe was combined with the signal probe, the fluorescent signal disappeared due to the photoinduced electron transfer effect. Methyltransferase activity was then detected based on the turn-off principle of the fluorescence signal from the DNA-AuNCs. The bioprobe enabled sensitive detection of M. SssI MTase with a detection limit of 0.178 U mL-1 and good specificity. The bioprobe demonstrated good detection efficiency in both human serum and cell lysates, and its unique fluorescence turn-off mechanism provided good resistance to interference, thus increasing its potential application in complex biological samples. Moreover, it is suitable for screening and assessing the inhibitory activity of M. SssI MTase inhibitors, and therefore has significant potential for disease diagnosis and drug discovery.
Collapse
Affiliation(s)
- Fangyu Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Tingting Fan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Zixia Guo
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
- National & Local United Engineering Lab for Personalized Anti-Tumor Drugs, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, PR China
| |
Collapse
|
9
|
Wang Y, Nie L, Hua Y, Gong L, Qiu X, Guo H. A simple paper-based nickel nanocluster-europium mixed ratio fluorescent probe for rapid visual sensing of tetracyclines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122431. [PMID: 36753865 DOI: 10.1016/j.saa.2023.122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/01/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
In this work, a ratiometric fluorometric sensor based on nickel nanoclusters (NiNCs)-europium complex (NiNCs-Eu3+) was constructed for the highly selectivity detection of tetracyclines (TCs) in water samples. In the presence of TCs, the blue fluorescence of the sensor NiNCs-Eu3+ was quenched at 430 nm and the characteristic red fluorescence of Eu3+-TCs appeared at 620 nm because of the combined help of inner filter effect (IFE) and antenna effect. Under the optimized conditions (100 mM Eu3+ (100 µL); temperature (25℃); reaction time (10 min), HEPES buffer solution (pH = 7.0)), the sensor offered a wide detection range of tetracycline (TC) and oxytetracycline (OTC) from 0.1 to 50 μM with the detection limit (LOD) of 25 nM and 21 nM, respectively. Moreover, the sensor was able to detect of TC and OTC in tap and lake water with high recovery rate (89.10%-97.60%). In addition, the portable paper-based sensor was constructed using filter paper embedded with NiNCs-Eu3+. The distinct fluorescent color of the paper-based sensor varied from bright blue to red against different concentrations of TC and OTC. These above findings demonstrated the potential for wide application of as-prepared ratio metric fluorescence sensor for visual detection of TCs in water samples.
Collapse
Affiliation(s)
- Yulin Wang
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512005, Guangdong, China
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea
| | - Liang Gong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Xiuzhen Qiu
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512005, Guangdong, China.
| | - Huishi Guo
- College of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512005, Guangdong, China.
| |
Collapse
|
10
|
Multicolor fluorescence assay of tetracycline: lanthanide complexed amino clay loaded with copper nanoclusters. Mikrochim Acta 2022; 189:462. [DOI: 10.1007/s00604-022-05546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
|
11
|
Cai ZF, Li HY, Wang XS, Min C, Wen JQ, Fu RX, Dai ZY, Chen J, Guo MZ, Yang HJ, Bai PP, Lu XM, Wu T, Wu Y. Highly luminescent copper nanoclusters as temperature sensors and “turn off” detection of oxytetracycline. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Jia H, Li J, Yang L, Fan D, Kuang X, Sun X, Wei Q, Ju H. Hollow Double-Shell CuCo 2O 4@Cu 2O Heterostructures as a Highly Efficient Coreaction Accelerator for Amplifying NIR Electrochemiluminescence of Gold Nanoclusters in Immunoassay. Anal Chem 2022; 94:7132-7139. [PMID: 35522579 DOI: 10.1021/acs.analchem.2c01162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The evolution of electrochemiluminescence (ECL) emission amplified by coreaction accelerator in near-infrared (NIR) area has been overwhelmingly anticipated for ultrasensitive detection of disease biomarkers. Herein, the hollow double-shell CuCo2O4@Cu2O (HDS-CuCo2O4@Cu2O) heterostructures were conveniently prepared and utilized as an attractive coreaction accelerator to improve the NIR ECL performance of gold nanoclusters (AuNCs) for the first time. Benefiting from perfect-matched lattice spacing, unique Cu2O nanoparticles (NPs) were formed in situ on the layered-hollow CuCo2O4 nanospheres (NSs) to obtain HDS-CuCo2O4@Cu2O heterostructures. The formed heterojunctions supplied shorter charge transfer distance and better interfacial charge transfer efficiency as well as more effective separation performance. Consequently, HDS-CuCo2O4@Cu2O heterostructures as an admirable electroactive substrate could significantly promote the formation of sufficient coreactant intermediate radicals to react with AuNCs cationic radicals, realizing about 3-folds stronger NIR ECL response than that of individual AuNCs. In addition, the AuNCs templated by l-methionine (l-Met) exhibited NIR ECL emission around 830 nm, which could decrease the photochemical damage to even realize a nondestructive detection with improved susceptibility and circumambient adaptability. Subsequently, a well site-oriented fixation strategy utilizing HWRGWVC heptapeptide as the specific antibody immobilizer was introduced to further preserve the bioactivity of antibody on the HDS-CuCo2O4@Cu2O and AuNCs surface along with enhancing the incubation performance markedly. In view of the progressive sensing mechanism, a NIR immunosensor was obtained for the ultrasensitive analysis of CYFRA21-1, which achieved a broad linear ranging from 2 fg/mL to 50 ng/mL and a low limit of detection (LOD) of 0.67 fg/mL (S/N = 3).
Collapse
Affiliation(s)
- Hongying Jia
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jingshuai Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Lei Yang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xuan Kuang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xu Sun
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
13
|
Shengda Qi, Zheng H, Almashriqi HS, Lv W, Zhai H. DNA-Templated Gold Nanoclusters for Fluorescence Resonance Energy Transfer-Based Human Serum Albumin Detection. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Ning Y, Li Y, Li X, Shao Z, Fu H, Yuan Y, Zhou D. Evolution of the earthworm (Eisenia fetida) microbial community in vitro and in vivo under tetracycline stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113214. [PMID: 35065502 DOI: 10.1016/j.ecoenv.2022.113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/27/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Bioremediation of contaminated soil has received increasing attention, and the effects of antibiotic residues on the soil ecological environment are a current research hotspot. Earthworms are the first choice of soil organisms to indicate the degree of soil pollution, and their detoxification mechanism after antibiotic stress must be further explored. Taking Eisenia fetida as the research object, an antibiotic (tetracycline) stress test was carried out in sterile artificial soil. The stress concentrations were set at 0, 0.3, 3, 30, 300 and 600 mg/kg. The ECO method was used to cultivate microbes in earthworms and soil. The carbon source utilization intensity algorithm developed by our team was used for data statistics, and a factor analysis model was constructed to explore the succession process of microbes of earthworms in vivo and in vitro under tetracycline stress. The results showed that there were four processes in the evolution of microbes under short-term tetracycline stress: at 1-3 days, the microbes in worms played a leading role; at 4-5 days, the microbes in the worms and the soil microbes jointly resisted TET stress; after 6-8 days of stress, the microbes in worms still played the main role, but their role was weakened; and after 9-10 days, soil microbes played a leading role, and tolerant microbes appeared. Under long-term stress, the microbes of earthworms in vivo and in vitro were obvious different, and there may be no regulatory relationship. And the factor analysis model is suitable for the analyse of the changes in microbial communities in vivo and in vitro under TET stress. The research results provide a reference method and model basis for the bioremediation of antibiotic-contaminated soil and the study of earthworm detoxification mechanisms, and help agricultural development.
Collapse
Affiliation(s)
- Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunfei Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojuan Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Ziyi Shao
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongtai Fu
- Harbin Meteorological Bureau, Harbin 150030, China
| | | | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
15
|
Yellow-emitting Au/Ag bimetallic nanoclusters with high photostability for detection of folic acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Bai R, Sun H, Jin P, Li J, Peng A, He J. Facile synthesis of carbon nitride quantum dots as a highly selective and sensitive fluorescent sensor for the tetracycline detection. RSC Adv 2021; 11:24892-24899. [PMID: 35481027 PMCID: PMC9036896 DOI: 10.1039/d1ra04272f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Enhanced blue fluorescent carbon nitride quantum dots (g-C3N4QDs) were synthesized by a simple solvothermal “tailoring” process from bulk g-C3N4 and analyzed by various characterization methods. The as-obtained g-C3N4QDs were successfully applied in the determination of tetracycline (TC) with a good linear relationship in the range of 0.23–202.70 μM. The proposed fluorescent sensor shows excellent stability, good repeatability, high selectivity and outstanding sensitivity to TC with a low detection limit of 0.19 μM. The fluorescence quenching mechanism of g-C3N4QDs with TC was mainly governed by static quenching and the inner filter effect. The method was successfully applied to monitor TC in tap water and milk powder samples. The g-C3N4QDs were synthesized by a simple solvothermal “tailoring” process from bulk g-C3N4 which have a “strong quenching” behaviour in the presence of TC. The proposed fluorescent sensor has been successfully applied to detect TC in actual samples.![]()
Collapse
Affiliation(s)
- Ruining Bai
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Heli Sun
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Peng Jin
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Jingwei Li
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Anzhong Peng
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| | - Jieli He
- College of Pharmacy, Dali University Dali 671000 Yunnan P. R. China +86-872-2257414
| |
Collapse
|
17
|
Ou L, Yang F, Luo J, Duan J, Sun A, Chen L, Wang L. A turn‐on fluorescence assay for heparin based on
DNA
‐templated gold nanoclusters via
ET. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- LiJuan Ou
- College of Material and Chemical Engineering Hunan Institute of Technology Hengyang P. R. China
| | - FaGuo Yang
- College of Material and Chemical Engineering Hunan Institute of Technology Hengyang P. R. China
| | - JianXin Luo
- College of Material and Chemical Engineering Hunan Institute of Technology Hengyang P. R. China
| | - JiaoJie Duan
- College of Material and Chemical Engineering Hunan Institute of Technology Hengyang P. R. China
| | - Aiming Sun
- College of Material and Chemical Engineering Hunan Institute of Technology Hengyang P. R. China
| | - LanLan Chen
- College of Material and Chemical Engineering Hunan Institute of Technology Hengyang P. R. China
| | - LingYun Wang
- College of Material and Chemical Engineering Hunan Institute of Technology Hengyang P. R. China
| |
Collapse
|
18
|
Wang HB, Mao AL, Li YH, Gan T, Liu YM. A turn-on fluorescence strategy for biothiols determination by blocking Hg(II)-mediated fluorescence quenching of adenine-rich DNA-templated gold nanoclusters. LUMINESCENCE 2020; 35:1296-1303. [PMID: 32510805 DOI: 10.1002/bio.3891] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 01/27/2023]
Abstract
Fluorescent adenine (A)-rich DNA-templated gold nanoclusters were demonstrated to be a novel probe for determination of biothiols (including cysteine, glutathione, and homocysteine). Fluorescence intensity of adenine-rich DNA-templated gold nanoclusters could be greatly quenched by Hg(II) ions through the formation of a gold nanoclusters-Hg(II) system. When biothiols (cysteine as the model) were introduced into the system, the fluorescence intensity recovered due to the formation of a more stable Hg(II)-thiol coordination complex using Hg-S metal-ligand bonds, which inhibited the Hg(II)-mediated fluorescence quenching of adenine-rich DNA-templated gold nanoclusters. Based on this fluorescence phenomenon, an on-off-on fluorescence strategy was designed for the sensitive determination of biothiols. The method allowed sensitive detection of cysteine with a linear detection range from 100 nM to 5 μM and a limit of detection of 30 nM. Additionally, the assay can be applied for detection of biothiol levels in human plasma samples. Therefore, it can provide a simple and rapid fluorescent platform for biothiol detection.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - An-Li Mao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Yong-Hong Li
- School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Tian Gan
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
19
|
Nazerdeylami S, Ghasemi JB, Amiri A, Mohammadi Ziarani G, Badiei A. Fluorescence turn off-on probe (β-cyclodextrin-hydroxyquinoline) for monitoring of Cd 2+ ions and tetracycline. Methods Appl Fluoresc 2020; 8:025009. [PMID: 32101795 DOI: 10.1088/2050-6120/ab7a75] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this paper, a photoluminescent turn off-on switch probe β-cyclodextrin-hydroxyquinoline (β-CD-HQ) was efficiently applied for detection and measurement of Cd2+ ions and detection of tetracycline. The proposed assay has shown an excellent selective fluorescence response toward Cd2+ ions over other ions like Al3+, Pb2+, Zn2+, Co2+, K+, Na+ and Sr2+. The fluorescence emission intensity of the probe is slightly affected by competing ions. In optimum pH value, 4, the limit of detection and linear concentration range were 0.05 nM and 0.1-1.5 nM, respectively. Additionally, the extraordinary output signal of β-CD-HQ was utilized to investigate the logic behavior of β-CD-HQ in the aqueous media. Accordingly, a solid support logic circuit was made by producing the fluorescence output signal under the stimulation of Cd2+ ions and tetracycline as inputs.
Collapse
|
20
|
Beyond native deoxyribonucleic acid, templating fluorescent nanomaterials for bioanalytical applications: A review. Anal Chim Acta 2020; 1105:11-27. [DOI: 10.1016/j.aca.2020.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
|
21
|
Lan W, Tan Q, Qiao J, Shen G, Qi L. d-Proline capped gold nanoclusters for turn-on detection of serum Raltitrexed. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Wang HB, Bai HY, Mao AL, Gan T, Liu YM. Poly(adenine)-templated fluorescent Au nanoclusters for the rapid and sensitive detection of melamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:375-381. [PMID: 31059889 DOI: 10.1016/j.saa.2019.04.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/10/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
A rapid and label-free fluorescence sensing strategy has been established for the sensitive determination of melamine (MA) on the basis of poly(adenine) (poly (A))-templated Au nanoclusters (AuNCs). The poly(A)-templated AuNCs possessed excellent luminescence and photo-stability. In the presence of Hg2+, the luminescence of AuNCs was quenched by Hg2+ through the metallophilic interactions between Au+ and Hg2+. When melamine was introduced, the fluorescence intensity of sensing system could be recovered. There was a greater coordination interaction between Hg2+ and melamine, which blocked the Hg2+-mediated fluorescence quenching of AuNCs. The assay allowed sensitive determination of melamine with a linear detection range from 50 nM to 100 μM. The limit of detection was as low as 16.6 nM. Furthermore, the label-free strategy was successfully employed for the detection of melamine concentration in real samples.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China.
| | - Hong-Yu Bai
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China
| | - An-Li Mao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China
| | - Tian Gan
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China.
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China
| |
Collapse
|
23
|
Wang HB, Bai HY, Mao AL, Liu YM. Poly(adenine) DNA-Templated Gold Nanocluster-Based Fluorescent Strategy for the Determination of Thiol-Containing Pharmaceuticals. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1609491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Hong-Yu Bai
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - An-Li Mao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
24
|
Wang HB, Bai HY, Dong GL, Liu YM. DNA-templated Au nanoclusters coupled with proximity-dependent hybridization and guanine-rich DNA induced quenching: a sensitive fluorescent biosensing platform for DNA detection. NANOSCALE ADVANCES 2019; 1:1482-1488. [PMID: 36132614 PMCID: PMC9419426 DOI: 10.1039/c8na00278a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
In this paper, the fluorescence signal of poly(A) DNA-templated Au nanoclusters (AuNCs) is found to be greatly quenched by photoinduced electron transfer (PET) when they are close to guanine (G)-rich DNA. Based on the findings, we have designed a low-cost fluorescence biosensing strategy for the sensitive detection of DNA. Highly luminescent and photo-stable poly(A) DNA-AuNCs were utilized as the fluorescent indicator and G-rich DNA was utilized as the fluorescent quencher. In the absence of target DNA, DNA-AuNCs failed to hybridize with the G-rich DNA and did not form the duplex DNA structure. Strong fluorescence intensity at 475 nm was observed due to the DNA-AuNCs being far away from the G-rich DNA. However, in the presence of target DNA, the DNA-AuNCs together with G-rich DNA could hybridize with the target DNA, leading to the 5' terminus of the DNA-AuNCs and the 3' terminus of G-rich DNA being in close proximity and promoting the cooperative hybridization. Therefore, a "Y" junction structure was formed and the G-rich sequences were brought close to the AuNCs. Therefore, the fluorescence intensity of the sensing system decreased significantly. Taking advantage of the poly(A) DNA-templated Au nanoclusters and G-rich DNA proximity-induced quenching, the strategy could be extended to determine other biomolecules by designing appropriate sequences of DNA probes.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University Xinyang 464000 PR China +86 376 6391172 +86 376 6391172
| | - Hong-Yu Bai
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University Xinyang 464000 PR China +86 376 6391172 +86 376 6391172
| | - Gao-Li Dong
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University Xinyang 464000 PR China +86 376 6391172 +86 376 6391172
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University Xinyang 464000 PR China +86 376 6391172 +86 376 6391172
| |
Collapse
|