1
|
Gamal A, Soliman M, Al-Anany MS, Eissa F. Optimization and validation of high throughput methods for the determination of 132 organic contaminants in green and roasted coffee using GC-QqQ-MS/MS and LC-QqQ-MS/MS. Food Chem 2024; 449:139223. [PMID: 38604032 DOI: 10.1016/j.foodchem.2024.139223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
Recently some major safety concerns have been raised on organic contaminants in widely consumed plants such as coffee. Hence, this study aimed to develop specifically optimized methods for determining organic contaminants, such as pesticides and polychlorinated biphenyls (PCBs), in coffee using GC-MS/MS and LC-MS/MS. QuEChERS method was used as a base extraction method, and 27 experiments were studied using design of experiments with categorical variables (extraction buffers, cleanup sorbents, and coffee roasting degree) to find the optimum method for each matrix type. The optimum method for green coffee was acetate buffer and chitosan for clean-up, while no-buffer extraction and the PSA + C18 method were ideal for light and dark-roasted coffee. The optimized methods were validated in accordance with SANTE/11312/2021. Furthermore, ten real samples (4 green, and 6 roasted) from the markets were analysed; ortho-phenylphenol was found in all the roasted coffee samples, and carbendazim was found in one green coffee sample.
Collapse
Affiliation(s)
- Abdulrhman Gamal
- Agricultural Research Center, Central Laboratory of residue Analysis of Pesticides and Heavy Metals in Foods (QCAP), Ministry of Agriculture and Land Reclamation, Giza 12311, Egypt
| | - Mostafa Soliman
- Agricultural Research Center, Central Laboratory of residue Analysis of Pesticides and Heavy Metals in Foods (QCAP), Ministry of Agriculture and Land Reclamation, Giza 12311, Egypt.
| | - Mohamed S Al-Anany
- Environment and Bio-agriculture Department, Faculty of Agriculture, Al-Azhar University, 11884, Nasr city, Cairo, Egypt
| | - Fawzy Eissa
- Environment and Bio-agriculture Department, Faculty of Agriculture, Al-Azhar University, 11884, Nasr city, Cairo, Egypt
| |
Collapse
|
2
|
Yasien S, Muntazir Iqbal M, Javed M, Iqbal S, Ahmad Z, Tamam N, Nadeem S, Elkaeed EB, Alzhrani RM, Awwad NS, Ibrahium HA, Alsaab HO. Quantification of Multi-class Pesticides in Stomach Contents and Milk by Gas Chromatography-Mass Spectrometry with Liquid Extraction Method. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
3
|
Logan N, Haughey SA, Liu L, Burns DT, Quinn B, Cao C, Elliott CT. Handheld SERS coupled with QuEChERs for the sensitive analysis of multiple pesticides in basmati rice. NPJ Sci Food 2022; 6:3. [PMID: 35027565 PMCID: PMC8758682 DOI: 10.1038/s41538-021-00117-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
Pesticides are a safety issue globally and cause serious concerns for the environment, wildlife and human health. The handheld detection of four pesticide residues widely used in Basmati rice production using surface-enhanced Raman spectroscopy (SERS) is reported. Different SERS substrates were synthesised and their plasmonic and Raman scattering properties evaluated. Using this approach, detection limits for pesticide residues were achieved within the range of 5 ppb-75 ppb, in solvent. Various extraction techniques were assessed to recover pesticide residues from spiked Basmati rice. Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERs) acetate extraction was applied and characteristic spectral data for each pesticide was obtained from the spiked matrix and analysed using handheld-SERS. This approach allowed detection limits within the matrix conditions to be markedly improved, due to the rapid aggregation of nanogold caused by the extraction medium. Thus, detection limits for three out of four pesticides were detectable below the Maximum Residue Limits (MRLs) of 10 ppb in Basmati rice. Furthermore, the multiplexing performance of handheld-SERS was assessed in solvent and matrix conditions. This study highlights the great potential of handheld-SERS for the rapid on-site detection of pesticide residues in rice and other commodities.
Collapse
Affiliation(s)
- Natasha Logan
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| | - Simon A Haughey
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Lin Liu
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - D Thorburn Burns
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Brian Quinn
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Cuong Cao
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Material and Advanced Technologies for Healthcare, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, UK
| | - Christopher T Elliott
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| |
Collapse
|
4
|
[Progress of sample preparation and analytical methods of dried fruit foods]. Se Pu 2021; 39:958-967. [PMID: 34486835 PMCID: PMC9404242 DOI: 10.3724/sp.j.1123.2021.06030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
坚果、果脯等干果类食品含有丰富的营养成分,深受国内外广大消费者的喜爱。但这些食品在果实生产、加工、储运时会使用农药或产生霉变等,造成干果中农药、重金属、霉菌毒素或添加剂等有害成分残留,甚至超过国家限量要求,带来严重的食品安全问题。因此,加强干果类食品的质量监督具有重要的经济和社会意义。但干果类食品基质复杂,有害物质种类多,结构和性质差异大,含量低,其分析检测需要快速高效的样品前处理技术和准确灵敏的分析检测方法。该文主要综述了近十年来干果类食品中有害物质的样品前处理及分析检测方法研究进展。其中样品前处理方法主要包括各种场辅助萃取法、相分离法和衍生化萃取方法等。场辅助萃取法主要是借助超声波和微波场等外场(协同)作用加快干果中有害物质的溶出速度,提高其萃取效率。相分离法,包括固相(微)萃取、分散固相萃取和液相(微)萃取法等,具有溶剂消耗少、分离富集效率高的优势,是干果样品分析中较常使用的前处理方法。该文还重点介绍了干果中各类有害成分分析检测技术,主要包括色谱、原子光谱、无机质谱、电化学分析等常规实验室方法,以及一些适用于现场分析的快速检测技术,并以此为基础,展望了干果类食品中有害物质分析检测技术的发展趋势。
Collapse
|
5
|
Current Strategies for Studying the Natural and Synthetic Bioactive Compounds in Food by Chromatographic Separation Techniques. Processes (Basel) 2021. [DOI: 10.3390/pr9071100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The present study summarizes the new strategies including advanced equipment and validation parameters of liquid and gas chromatography methods i.e., thin-layer chromatography (TLC), column liquid chromatography (CLC), and gas chromatography (GC) suitable for the identification and quantitative determination of different natural and synthetic bioactive compounds present in food and food products, which play an important role in human health, within the period of 2019–2021 (January). Full characteristic of some of these procedures with their validation parameters is discussed in this work. The present review confirms the vital role of HPLC methodology in combination with different detection modes i.e., HPLC-UV, HPLC-DAD, HPLC-MS, and HPLC-MS/MS for the determination of natural and synthetic bioactive molecules for different purposes i.e., to characterize the chemical composition of food as well as in the multi-residue analysis of pesticides, NSAIDs, antibiotics, steroids, and others in food and food products.
Collapse
|
6
|
Tu FQ, Yang M. Determination of Pesticides in Apples by High-Performance Liquid Chromatography–Mass Spectrometry (HPLC–MS) with High-Resolution Multiple Reaction Monitoring. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1938594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Feng-Qin Tu
- Wuhan Institute for Food and Cosmetic Control, Wuhan, China
| | - Ming Yang
- Wuhan Institute for Food and Cosmetic Control, Wuhan, China
| |
Collapse
|
7
|
Xiao X, Hu S, Lai X, Peng J, Lai W. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Han C, Zhou H, Wu W, Chen X, Li H, Li Y, Feng D. Development and Validation of a Method to Simultaneously Determine Multiple Sterols in Diversiform Food Substrates with UPLC-MS/MS. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01962-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Zhu Y, Du P, Yang J, Yin Q, Yang Y. Screening of multiclass pesticide residues in maca and Moringa oleifera by a modified QuEChERS sample preparation procedure and UPLC-ESI-MS/MS analysis. RSC Adv 2020; 10:36906-36919. [PMID: 35517969 PMCID: PMC9057067 DOI: 10.1039/d0ra06375d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/17/2020] [Indexed: 11/26/2022] Open
Abstract
In the present study, a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method was proposed for the simultaneous analysis of 75 pesticides in maca and Moringa oleifera with ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). The developed method was validated in accordance with linearity, linear range, limit of detection, limit of quantification, accuracy, precision, and matrix effect. Each analyte had good linearity (R2 > 0.99) in the corresponding concentration range. The method LOD and LOQ values of all the analytes ranged from 0.01 μg kg−1 to 303.35 μg kg−1 and 0.03 μg kg−1 to 1011.15 μg kg−1, respectively. The recoveries (n = 6) of the analyzed pesticides were in the range of 75.92–113.43%. The RSDs of precision were between 0.60% and 7.36%. All matrix effect values ranged from 81.79% to 118.71% and 80.36% to 119.64% in maca and Moringa oleifera, respectively. The analysis of 103 samples showed the presence of isofenphos-methyl in some of them. The method had a good application prospect and could be used as a general approach for the quantitative determination of pesticide residues in food. In the present study, a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method was proposed for the simultaneous analysis of 75 pesticides in maca and Moringa oleifera with UPLC-ESI-MS/MS.![]()
Collapse
Affiliation(s)
- Yanqin Zhu
- Research Center for Analysis and Measurement, Kunming University of Science and Technology Kunming 650093 China +86-87165113971 +86-87165113971.,Analysis and Test Center of Yunnan Province Kunming 650093 China.,Faculty of Life Science and Technology, Kunming University of Science and Technology Kunming 650500 China
| | - Ping Du
- Research Center for Analysis and Measurement, Kunming University of Science and Technology Kunming 650093 China +86-87165113971 +86-87165113971.,Analysis and Test Center of Yunnan Province Kunming 650093 China
| | - Jun Yang
- Research Center for Analysis and Measurement, Kunming University of Science and Technology Kunming 650093 China +86-87165113971 +86-87165113971.,Analysis and Test Center of Yunnan Province Kunming 650093 China
| | - Qinhong Yin
- Faculty of Narcotics Control, Yunnan Police College Kunming 650223 China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology Kunming 650500 China
| |
Collapse
|
10
|
Iqbal S, Iqbal MM, Javed M, Bahadur A, Yasien S, Hurr A, Ahmad N, Raheel M, Liu G. Modified QuEChERS extraction method followed by simultaneous quantitation of nine multi-class pesticides in human blood and urine by using GC-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122227. [PMID: 32603923 DOI: 10.1016/j.jchromb.2020.122227] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 01/19/2023]
Abstract
Organophosphate, carbamate and pyrethroid pesticides are the most common insecticides used worldwide. They may cause chronic poisoning in farmers and acute poisoning in homicidal or suicidal cases. The determination of trace levels of these pesticides in human blood and urine is very challenging. This study focuses on a simultaneous quantitation method that was developed and validated for multi-class nine pesticides belonging to organophosphate, carbamate and pyrethroid classes in human blood and urine. Target pesticides were extracted from blood and urine using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction method. Capillary column DB-35 ms (15 m × 0.25 mm, 0.25 µm) was used for chromatography with a 0.079 ml/min flow rate of carrier gas at constant pressure mode. Quantitation of sulfotep, phorate, carbofuran, chlorpyriphos, profenophos, triazophos, pyriproxyfen, lambda-cyhalothrin and permethrin was performed by mass spectrometer equipped with electron impact ionization source using selected ion monitoring (SIM) mode. The lower and upper limits of quantitation for all nine pesticides were 0.01 mg/L and 2.0 mg/dL respectively. The proposed method was proved to be simple, fast, sensitive, and robust. It has been applied to the analysis of 9 pesticides samples.
Collapse
Affiliation(s)
- Shahid Iqbal
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, Guangdong, China.
| | - Muhammad Muntazir Iqbal
- Department of Chemistry, School of Science, University of Management and Technology Lahore, Pakistan; Department of Toxicology, Punjab Forensic Science Agency Lahore, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology Lahore, Pakistan.
| | - Ali Bahadur
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 16229, South Korea
| | - Sara Yasien
- University College of Pharmacy, University of The Punjab Lahore, Pakistan
| | - Amir Hurr
- Department of Toxicology, Punjab Forensic Science Agency Lahore, Pakistan
| | - Naveed Ahmad
- Department of Chemistry, School of Science, University of Management and Technology Lahore, Pakistan
| | - Muhammad Raheel
- Department of Chemistry, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Guocong Liu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, Guangdong, China.
| |
Collapse
|