1
|
Hu K, Wang Y, Wang G, Wu Y, He Q. Research progress of the combination of COFs materials with food safety detection. Food Chem 2023; 429:136801. [PMID: 37442087 DOI: 10.1016/j.foodchem.2023.136801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/13/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Covalent organic frameworks (COFs) have received lots of attention due to their multiple advantages such as high specific surface area, controlled pore size, and excellent stability. When detecting food contaminants, the matrix effect brought by complex food samples can significantly affect the accuracy of the results. How to attenuate matrix effect has always been a major challenge. Utilizing the advantages of COFs and applying them to detect food contaminants is currently a key research direction. The aim of this work is to provide a systematic summary of sample pretreatment techniques and detection techniques combined with COFs, which include almost all current techniques combined with COFs. In addition, the principles of combining COFs with different techniques are explained. Finally, the research foci and development direction of COFs in food contaminant detection are discussed. This is an important reference for the future development of food safety and the design of COFs.
Collapse
Affiliation(s)
- Kexin Hu
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yajie Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guanzhao Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yongning Wu
- Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Qinghua He
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Xiao Y, Zhang T, Zhang H. Recent advances in the peptide-based biosensor designs. Colloids Surf B Biointerfaces 2023; 231:113559. [PMID: 37738870 DOI: 10.1016/j.colsurfb.2023.113559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Biosensors have rapidly emerged as a high-sensitivity and convenient detection method. Among various types of biosensors, optical and electrochemical are the most commonly used. Conventionally, antibodies have been employed to ensure specific interaction between the transmission material and analytes. However, there has been increasing recognition of peptides as a promising recognition element for biosensor development in recent years. The use of peptides as recognition elements provides high level of specificity, sensitivity, and stability for the detection process. The combination of peptide designs and optical or electrochemical detection methods has significantly improved biosensor efficacy. These advancements present opportunities for developing biosensors with diverse functions that can be used to lay a strong scientific foundation for the development of personalized medicine and various other fields. This paper reviews the recent advancements in the development and application of peptide-based optical and electrochemical biosensors, as well as their prospects as a sensor type.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Ting Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
3
|
Singh G, Sharma S, Singh A, Devi A, Gupta S, Malik P, Khurana S, Soni S. Detection of 2,4-dichlorophenoxyacetic acid in water sample by organosilane based silica nanocomposites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159594. [PMID: 36280050 DOI: 10.1016/j.scitotenv.2022.159594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The present study aims to produce nanocomposites of silica based organosilane as sensitive and selective fluorescent sensor for the recognition of 2,4 dichlorophenoxyacetic acid (2,4-D). Hydrazone tethered triazole functionalized organosilane has been synthesized by the condensation reaction of 4-hydroxybenzaldehyde and phenyl hydrazine followed by Cu(I) catalysed cycloaddition of azide with alkyne. The prepared compound has been further grafted over silica surface and the synthesized materials were characterized by FT-IR, NMR (1H and 13C), XRD, mass spectrometry and FE-SEM spectral analyses. The prepared organosilane and its HSNPs have been utilized as an effective emission probe for the selective detection of 2,4 D with good linear relationship in the range of 0-160 μM and 0-115 μM and LOD value of 46 nM and 13.5 nM respectively. In the presence of other active species, the sensor shows minimal interference while the comparison with the previously reported techniques suggests it to be more desirable for the sensitive and selective detection of 2,4 D. Further, the real sample application for detection of 2,4 D was analyzed in field water and the HSNPs based sensing system gave recovery percentage of above 98 %.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Sanjay Sharma
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Akshpreet Singh
- Department of Chemistry, DAV College, Sector-10, Chandigarh 160011, India.
| | - Anita Devi
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Sofia Gupta
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Pooja Malik
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Sumesh Khurana
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Sajeev Soni
- Department of Chemistry, GGDSD College, Sector-32, Chandigarh, India
| |
Collapse
|
4
|
Chu H, Sun X, Zha X, Zhang Y, Wang Y. Synthesis of core-shell structured metal oxide@covalent organic framework composites as a novel electrochemical platform for dopamine sensing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Ye X, Zhang F, Yang L, Yang W, Zhang L, Wang Z. Paper-based multicolor sensor for on-site quantitative detection of 2,4-dichlorophenoxyacetic acid based on alkaline phosphatase-mediated gold nanobipyramids growth and colorimeter-assisted method for quantifying color. Talanta 2022; 245:123489. [PMID: 35460981 DOI: 10.1016/j.talanta.2022.123489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/25/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
On-site quantitative analysis of pesticides is important for food safety. Colorimetric gold nanobipyramids (AuNBPs) sensors are powerful methods for on-site detection. However, a single quantitative method and the instability of AuNBPs in solution limit the practicability of those sensors. Here, a paper-based multicolor AuNBPs sensor involved a colorimeter-assisted method for quantifying color was developed for quantitative detection of 2,4-dichlorophenoxyacetic acid (2,4-D), a common herbicide. The novelty of this study lies in developing a general paper-based quantitative on-site method (PQOM) for colorimetric AuNBPs sensors. Firstly, a paper-based analytical device (PAD) consisting of a nylon membrane, absorbent cotton layers, and two acrylic plates was fabricated to deposit AuNBPs. We demonstrated the PAD could improve the stability of AuNBPs and the detection sensitivity of AuNBPs sensors. Then, a handheld colorimeter was first used to quantify the color change of AuNBPs on the PAD based on the CIELab color space. Finally, as proof of concept, the PQOM was successfully employed to quantify 2,4-D by combining with an alkaline phosphatase-mediated AuNBPs growth method. In this method, 2,4-D specifically inhibited alkaline phosphatase activity to suppress the generation of l-ascorbic acid, thereby mediating AuNBPs growth. The developed sensor exhibited seven 2,4-D concentration-related colors and detected as low as 50 ng mL-1 2,4-D by naked-eye observation and 18 ng mL-1 2,4-D by a colorimeter. It was applied to detect 2,4-D in the spiked rice and apple samples with good recovery rates (91.8-112.0%) and a relative standard deviation (n = 5) < 5%. The success of this study provides a sensing platform for quantifying 2,4-D on site.
Collapse
Affiliation(s)
- Xingyan Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lan Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weijuan Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liaoyuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zongwen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Heydarzadeh M, Heydari R. Determination of 2,4‐dichlorophenoxyacetic acid in environmental and food samples using salt‐assisted liquid‐liquid extraction coupled with micro‐channel and high‐performance liquid chromatography. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohsen Heydarzadeh
- Department of Chemistry Science and Research Branch Islamic Azad University Tehran Iran
| | - Rouhollah Heydari
- Research Center for Environmental Determinants of Health, Health Institute Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
7
|
Pan X, Xu X, Song S, Xu L, Kuang H, Wu X, Liu L, Xu C. An ic-ELISA and immunochromatographic strip assay for the detection of 2,4-dichlorophenoxyacetic acid in bean sprouts and cabbage. J Pharm Biomed Anal 2021; 209:114524. [PMID: 34906920 DOI: 10.1016/j.jpba.2021.114524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
The compound 2,4-dichlorophenoxyacetic acid (2,4-D) is a synthetic plant growth regulator, which is widely used in agricultural production. Consequently, it is necessary to establish a rapid and sensitive detection method to monitor its use and prevent the environmental and human health problems caused by overuse. In this study, a monoclonal antibody (mAb) 2D5 against 2,4-D was prepared, and based on it, an ic-ELISA and an immunochromatographic strip assay (ICA) were developed for rapid detection. The 50% inhibitory concentration (IC 50) of the mAb against 2,4-D was 1.7 ng mL-1 and the mAb showed no cross-reactivity with other plant growth regulators with similar structures to 2,4-D. Under optimum conditions, the ICA showed a visual detection limit (vLOD) of 20 ng mL-1 and a cut-off value of 200 ng mL-1 in bean sprouts, and cabbage samples gave the same results. The quantitative detection showed the linear detection ranges for bean sprouts and cabbage samples were 6.3-73.0 and 5.4-132.6 ng mL-1, respectively. The ICA was successfully applied to detect 2,4-D in bean sprouts and cabbage samples and achieved good recoveries ranging from 94.7% to 104.3% with a coefficient of variation (CV) less than 8.3%. Hence, the ICA provides a sensitive, efficient and reliable detection method, which has broad application prospects in the detection of a large number of samples.
Collapse
Affiliation(s)
- Xiaomin Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaoling Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
8
|
Qu F, Chen Y, Jiang D, Zhao XE. pH-modulated aggregation-induced emission of Au/Cu nanoclusters and its application to the determination of urea and dissolved ammonia. Mikrochim Acta 2021; 188:113. [PMID: 33677619 DOI: 10.1007/s00604-021-04770-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/20/2021] [Indexed: 01/11/2023]
Abstract
A fluorescence platform is designed based on aggregation-induced emission of Au/Cu nanoclusters (Au/Cu NCs) driven by pH value. When pH increases from 6.0 to 7.0, Au/Cu NCs change from aggregation to dispersion, accompanied by the oxidation of Cu cores. Under the catalysis of urease, urea is hydrolysed to release ammonia, which further undergoes a hydrolysis reaction to produce OH-, causing the pH to increase. The fluorescence of Au/Cu NCs quenches linearly at 590 nm with the excitation wavelength at 320 nm when the concentration of urea varies from 5.0 to 100 μM. The limit of detection (LOD) and limit of quantification (LOQ) of urea are 2.23 and 7.45 μM, respectively. Combined with headspace single-drop microextraction technology, Au/Cu NCs are employed to monitor dissolved ammonia with low-cost and simple operation. The linear range of dissolved ammonia is from 20 to 300 μM. The LOD and LOQ of dissolved ammonia are 7.04 and 23.4 μM, respectively. The relative standard deviation (RSD) values of the intra-day and inter-day precision of urea are 2.4-3.0% and 3.0-3.7%, respectively, and those of dissolved ammonia are in the range 3.4-5.1% (intra-day precision) and 4.2-5.8% (inter-day precision). No interferences have been indentified in the determination of urea and dissolved ammonia. Finally, the proposed method has been applied to determine urea in human urine samples and dissolved ammonia in water samples with satisfactory results.Graphical abstract The pH increase produces the dispersion and decomposition of Au/Cu NCs, leading to the fluorescence quenching. Both urea and dissolved ammonia are detected successfully because they cause the pH change to alkaline.
Collapse
Affiliation(s)
- Fei Qu
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, Shandong, China. .,The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, Shandong, China.
| | - Yanan Chen
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, Shandong, China.,The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Xian-En Zhao
- The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, Shandong, China. .,The Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu, 273165, Shandong, China.
| |
Collapse
|