1
|
Ni CS, Zhang WJ, Bi WZ, Wu MX, Feng SX, Chen XL, Qu LB. Facile synthesis of N-doped graphene quantum dots as a fluorescent sensor for Cr(vi) and folic acid detection. RSC Adv 2024; 14:26667-26673. [PMID: 39175673 PMCID: PMC11340008 DOI: 10.1039/d4ra05016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024] Open
Abstract
The development of stable fluorescent sensors for toxic pollutants and drugs is meaningful to the environment and public health. In this work, nitrogen-doped graphene quantum dots (N-GQDs) were facially synthesized by a one-step hydrothermal method using soluble starch and l-arginine as carbon and nitrogen sources in pure water at 190 °C for 4 h. The as-synthesized N-GQDs were well characterized and displayed blue fluorescence emission at 445 nm with excellent pH stability, salt tolerance, thermostability, photobleaching resistance and reproducibility. Moreover, N-GQDs could serve as an "on-off" sensor for selective detection of Cr(vi) and folic acid with low detection limit (0.80 and 2.1 μM), good linear correlation over wide linear range (0-50 μM and 0-200 μM) as well as short response time (<10 s). The practical applications of N-GQDs for Cr(vi) and folic acid detection in actual samples were further investigated and showed acceptable recoveries (92-105%) with relative standard deviations less than 5%. These results indicated that this N-GQDs-based sensor could be a potential alternative for Cr(vi) and folic acid detection in the fields of environmental monitoring and drug analysis.
Collapse
Affiliation(s)
- Chu-Sen Ni
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Wen-Jie Zhang
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
| | - Wen-Zhu Bi
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou 450046 China
| | - Ming-Xia Wu
- School of Pharmacy, Henan University of Chinese Medicine Zhengzhou 450046 China
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou 450046 China
| | - Su-Xiang Feng
- Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application Zhengzhou 450046 China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine Zhengzhou 450046 China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province & Education Ministry of P. R. China Zhengzhou 450046 China
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
2
|
Kayani KF, Rahim MK, Mohammed SJ, Ahmed HR, Mustafa MS, Aziz SB. Recent Progress in Folic Acid Detection Based on Fluorescent Carbon Dots as Sensors: A Review. J Fluoresc 2024:10.1007/s10895-024-03728-3. [PMID: 38625574 DOI: 10.1007/s10895-024-03728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Folic acid (FA) is a water-soluble vitamin found in diverse natural sources and is crucial for preserving human health. The risk of health issues due to FA deficiency underscores the need for a straightforward and sensitive FA detection methodology. Carbon dots (CDs) have gained significant attention owing to their exceptional fluorescence performance, biocompatibility, and easy accessibility. Consequently, numerous research studies have concentrated on developing advanced CD fluorescent probes to enable swift and precise FA detection. Despite these efforts, there is still a requirement for a thorough overview of the efficient synthesis of CDs and their practical applications in FA detection to further promote the widespread use of CDs. This review paper focuses on the practical applications of CD sensors for FA detection. It begins with an in-depth introduction to FA and CDs. Following that, based on various synthetic approaches, the prepared CDs are classified into diverse detection methods, such as single sensing, visual detection, and electrochemical methods. Furthermore, persistent challenges and potential avenues are highlighted for future research to provide valuable insights into crafting effective CDs and detecting FA.
Collapse
Affiliation(s)
- Kawan F Kayani
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq.
- Department of Chemistry, College of Science, Charmo University, Chamchamal/Sulaimani, Kurdistan Region, 46023, Iraq.
- Department of Pharmacy, Kurdistan Technical Institute, Sulaymaniyah City, Iraq.
| | - Mohammed K Rahim
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq
| | - Sewara J Mohammed
- Anesthesia department, College of Health Sciences, Cihan University Sulaimaniya, Sulaimaniya, Kurdistan Region, 46001, Iraq
- Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq
| | - Harez Rashid Ahmed
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq
- College of Science, Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Muhammad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan Street,, Sulaymaniyah City, Kurdistan Region, 46002, Iraq
| | - Shujahadeen B Aziz
- Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq
| |
Collapse
|
3
|
Li D, Wang J. Semiconductor/Carbon Quantum Dot-based Hue Recognition Strategy for Point of Need Testing: A Review. ChemistryOpen 2023; 12:e202200165. [PMID: 36891621 PMCID: PMC10068770 DOI: 10.1002/open.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/30/2023] [Indexed: 03/10/2023] Open
Abstract
The requirement to establish novel methods for visual detection is attracting attention in many application fields of analytical chemistry, such as, healthcare, environment, agriculture, and food. The research around subjects like "point-of-need", "hue recognition", "paper-based sensor", "fluorescent sensor", etc. has been always aimed at the opportunity to manufacture convenient and fast-response devices to be used by non-specialists. It is possible to achieve economic rationality and technical simplicity for optical sensing toward target analytes through introduction of fluorescent semiconductor/carbon quantum dot (QD) and paper-based substrates. In this Review, the mechanisms of anthropic visual recognition and fluorescent visual assays, characteristics of semiconductor/carbon QDs and ratiometric fluorescence test paper, and strategies of semiconductor/carbon QD-based hue recognition are described. We cover latest progress in the development and application of point-of-need sensors for visual detection, which is based on a semiconductor/carbon quantum dot-based hue recognition strategy generated by ratiometric fluorescence technology.
Collapse
Affiliation(s)
- Daquan Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
4
|
Zhao X, Wu J, Tian W. Terbium( iii)-based coordination polymer with millimeter-size single crystals and high selectivity and sensitivity for folic acid. CrystEngComm 2023. [DOI: 10.1039/d2ce01608g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Terbium(iii)-based coordination polymer with millimeter-size single crystals and high selectivity and sensitivity for folic acid.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jianfeng Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
5
|
Liu M, Sun Z, Guo R. Selective and Sensitive Detection of Pseudomonas aeruginosa Based on Aminoguanidine-Functionalized Carbon Dots Synthesized by One-Step Hydrothermal Method. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Jia X, Yin CL, Li J, Li JR, An BL, Xu J. Efficient synthesis of yellow-green carbon quantum dots as a sensitive fluorescent probe of folic acid. Chem Asian J 2022; 17:e202200046. [PMID: 35233966 DOI: 10.1002/asia.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/27/2022] [Indexed: 11/08/2022]
Abstract
Bright yellow-green carbon quantum dots (YGCDs) have been successfully synthesized by a simple and efficient hydrothermal method. Its luminescent absolute quantum yield reached 30.0% in 4 h, compared with that using common reported solvothermal method, the synthesis time was reduced more than 70% with tin oxide nano particles as a catalyst. Moreover, the fluorescence of YGCDs could be selectively quenched by folic acid (FA) molecules, and the relative fluorescence intensities of F/F0 was fitted perfectly in line decay curve versus the concentration of FA in the range of 2.0 × 10-8 mol/l ~ 1.0 × 10-5 mol/l (R2 = 0.9988). The detection limit of FA was below 2.0 × 10-8 mol/l, suggesting a promising fluorescent probe of folic acid.
Collapse
Affiliation(s)
- Xin Jia
- Shanghai University, Department of chemistry, CHINA
| | | | - Jing Li
- Shanghai University, Department of chemistry, CHINA
| | - Juan-Rong Li
- Shanghai University, Department of chemistry, CHINA
| | - Bao-Li An
- Shanghai University, Department of chemistry, Shangda road 99, 200444, Shanghai, CHINA
| | - Jiaqiang Xu
- Shanghai University, Department of chemistry, CHINA
| |
Collapse
|
7
|
Zhu P, Li J, Gao L, Xiong J, Tan K. Strategy to Synthesize Tunable Multiemission Carbon Dots and Their Multicolor Visualization Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33354-33362. [PMID: 34250799 DOI: 10.1021/acsami.1c07260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Studies on multiemission fluorescent carbon dots (CDs) excited at one wavelength are extremely promising because of their label-free property, facile synthesis, multicolor visualization, and prevention of background interference. In this study, a novel template strategy to develop multiemission carbon dots (M-CDs) using fluorescent precursors has emerged. We attempted to elucidate the relationship between precursor substances and luminescence origins. The M-CDs prepared by calcein demonstrate three emissions, ultraviolet (UV), blue, and green, which are attributed to the solvent, surface defect, and precursor aromatic ring luminophores, respectively. Also, through a regular adjustment of the amount of NaOH or the solvothermal synthesis time, the expected optical requirements were successfully met by the M-CDs, which is a better capability than that of previously reported M-CDs. In addition, a multicolor sensor designed with M-CDs and rhodamine B (RhB) has been successfully applied in cell imaging. When exposed to different pH media, the fluorescence (FL) emission shows a linear relationship with the pH value, displaying a profuse color evolution from dark blue to light blue, cyan, green, yellow, and finally, orange.
Collapse
Affiliation(s)
- Panpan Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jiayu Li
- Chongqing Key Laboratory of Translational Medicine in Major Metabolic Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Lixia Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jie Xiong
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Kejun Tan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|