1
|
Ambroselli D, Masciulli F, Romano E, Guerrini R, Ingallina C, Spano M, Mannina L. NMR Metabolomics of Arctium lappa L. , Taraxacum officinale and Melissa officinalis: A Comparison of Spontaneous and Organic Ecotypes. Foods 2024; 13:1642. [PMID: 38890870 PMCID: PMC11171743 DOI: 10.3390/foods13111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Officinal plants are a source of metabolites whose chemical composition depends on pedoclimatic conditions. In this study, the NMR-based approach was applied to investigate the impacts of different altitudes and agronomical practices (Land, Mountain Spontaneous, and Organically Grown Ecotypes, namely LSE, MSE, and OE, respectively) on the metabolite profiles of Burdock root, Dandelion root and aerial part, and Lemon balm aerial part. Sugars, amino acids, organic acids, polyphenols, fatty acids, and other metabolites were identified and quantified in all samples. Some metabolites turned out to be tissue-specific markers. Arginine was found in roots, whereas myo-inositol, galactose, glyceroyldigalactose moiety, pheophytin, and chlorophyll were identified in aerial parts. Caftaric and chicoric acids, 3,5 di-caffeoylquinic acid, and chlorogenic and rosmarinic acids were detected in Dandelion, Burdock and Lemon balm, respectively. The metabolite amount changed significantly according to crop, tissue type, and ecotype. All ecotypes of Burdock had the highest contents of amino acids and the lowest contents of organic acids, whereas an opposite trend was observed in Lemon balm. Dandelion parts contained high levels of carbohydrates, except for the MSE aerial part, which showed the highest content of organic acids. The results provided insights into the chemistry of officinal plants, thus supporting nutraceutical-phytopharmaceutical research.
Collapse
Affiliation(s)
- Donatella Ambroselli
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
- NMR-Based Metabolomics Laboratory (NMR Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Fabrizio Masciulli
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
- NMR-Based Metabolomics Laboratory (NMR Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Enrico Romano
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
- NMR-Based Metabolomics Laboratory (NMR Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ruggero Guerrini
- Université de Lille, CNRS, UMR 8516—LASIRE—Laboratoire de Spectroscopie Pour les Interactions, la Réactivité et l’Environnement, F-59000 Lille, France;
| | - Cinzia Ingallina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
- NMR-Based Metabolomics Laboratory (NMR Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Mattia Spano
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
- NMR-Based Metabolomics Laboratory (NMR Lab), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Luisa Mannina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (D.A.); (F.M.); (E.R.); (M.S.); (L.M.)
| |
Collapse
|
2
|
Cai Y, Abla M, Gao L, Wu J, Yang L. Research on Phenolic Content and Its Antioxidant Activities in Fermented Rosa rugosa 'Dianhong' Petals with Brown Sugar. Antioxidants (Basel) 2024; 13:607. [PMID: 38790712 PMCID: PMC11117507 DOI: 10.3390/antiox13050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Fermented Rosa rugosa 'Dianhong' petals with brown sugar, a biologically active food popularized in Dali Prefecture, Northwest Yunnan, China, are rich in bioactive compounds, especially polyphenols, exhibiting strong antioxidant activity. This study evaluated their antioxidant activities, total phenolic contents, and concentrations of polyphenols at different fermentation conditions using different assays: DPPH free-radical scavenging activity, Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP), Folin-Ciocalteu assays, and HPLC-MS/MS and HPLC-DAD methods. The results indicated that fermentation significantly increased (p < 0.05) the antioxidant activity and polyphenol concentration of R. rugosa 'Dianhong'. Furthermore, Saccharomyces rouxii TFR-1 fermentation achieved optimal bioactivity earlier than natural fermentation. Overall, we found that the use of Saccharomyces rouxii (TFR-1) is a more effective strategy for the production of polyphenol-rich fermented R. rugosa 'Dianhong' petals with brown sugar compared to natural fermentation.
Collapse
Affiliation(s)
- Yueyue Cai
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China; (Y.C.); (L.G.)
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Merhaba Abla
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Lu Gao
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China; (Y.C.); (L.G.)
| | - Jinsong Wu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Lixin Yang
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China; (Y.C.); (L.G.)
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Center for Biodiversity and Indigenous Knowledge, Kunming 650034, China
| |
Collapse
|
3
|
Ryu DH, Cho JY, Yang SH, Kim HY. Effects of Harvest Timing on Phytochemical Composition in Lamiaceae Plants under an Environment-Controlled System. Antioxidants (Basel) 2023; 12:1909. [PMID: 38001762 PMCID: PMC10669742 DOI: 10.3390/antiox12111909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The Lamiaceae family is widely recognized for its production of essential oils and phenolic compounds that have promising value as pharmaceutical materials. However, the impact of environmental conditions and different harvest stages on the phytochemical composition of Lamiaceae plants remains poorly understood. This study aimed to investigate the effects of harvest time on the phytochemical composition, including rosmarinic acid (RA) and volatile organic compounds (VOCs), of four Lamiaceae plants-Korean mint (AR), lemon balm (MO), opal basil (OBP), and sage (SO)-and was conducted under an environment-controlled system. Although all four plants had RA as the dominant compound, its distribution varied by species. The flowered plants, including AR and OBP, exhibited a rapid increase of RA during the transition from the vegetative stage to the reproductive stage. In contrast, non-flowered groups, including MO and SO, showed a steady increase in the content of total phenolics and RA. The main components of VOCs also differed depending on the plant, with characteristic fragrance compounds identified for each one (AR: estragole; MO: (Z)-neral and geranial; OBP: methyl eugenol, eugenol, and linalool; and SO: (Z)-thujone, camphor, and humulene). The total VOCs content was highest on the 60th day after transplanting regardless of the species, while the trends of total phenolics, RA content, and antioxidant activities were different depending on whether plant species flowered during the cultivation cycle. There was a steady increase in species that had not flowered, and the highest content and activity of the flowering period were confirmed in the flowering plant species.
Collapse
Affiliation(s)
- Da-Hye Ryu
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.-H.R.); (J.-Y.C.)
| | - Jwa-Yeong Cho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.-H.R.); (J.-Y.C.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Seung-Hoon Yang
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea;
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.-H.R.); (J.-Y.C.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|