1
|
Qin H, Jiang H, Huang S, Yang J, Fu Q, Zhang R, Chen Z, Liu M. Photobiomodulation of Blue Light Enhance Melanoma Cellular Recovery Following Viral Infection via Mitochondrial Pathways. JOURNAL OF BIOPHOTONICS 2025:e202400525. [PMID: 39957346 DOI: 10.1002/jbio.202400525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
This study aimed to elucidate the response of B16F10 cells to blue light following infection with an empty adenoviral vector (Adv). Twenty-four hours post-infection, the B16F10 cells underwent phototherapy, and a range of cellular parameters were assessed, including cell viability, melanin content, cell cycle progression, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), apoptosis, necrosis, lactate dehydrogenase (LDH) release, and autophagy. The findings indicated that Adv infection elevated melanin content and autophagy, resulting in G1 phase cell cycle arrest. In comparison to the control group, light-treated, Adv-infected cells exhibited reduced inhibition rates, LDH release, apoptosis, and necrosis, while MMP and ROS levels were elevated. The study concluded that although Adv, as a gene delivery vector in conjunction with light therapy, significantly modulated melanin content and autophagy. Moreover, while melanin's light absorption capacity mitigated MMP reduction, the resultant excitation molecules generated ROS, enhancing oxidative stress.
Collapse
Affiliation(s)
- Haokuan Qin
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Shijie Huang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Ruixiao Zhang
- Department of Emergency, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Zeqing Chen
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| |
Collapse
|
2
|
Leng Y, Li P, Zhou L, Xiao L, Liu Y, Zheng Z, Qin F, Hao Q, Xu H, Yao S, Dong B. Long-Term Correction of Copper Metabolism in Wilson's Disease Mice with AAV8 Vector Delivering Truncated ATP7B. Hum Gene Ther 2020; 30:1494-1504. [PMID: 31668086 DOI: 10.1089/hum.2019.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism caused by mutations in the ATP7B gene encoding a liver active copper transport enzyme. Gene therapy with adeno-associated virus (AAV) carrying full-length ATP7B, which is about 4.4 kb, was shown to rescue copper metabolism disorder in WD mouse model. However, due to its relatively large size, the AAV vector containing full-length ATP7B could be oversized for its packaging capacity, which could lead to inefficient packaging. To this purpose, we engineered a truncated ATP7B mutant (tATP7B) that is about 3.3 kb in length and used for AAV gene therapy for WD mice. In vitro test showed that the excretion of copper outside the cells could be achieved with tATP7B as efficient as the full-length ATP7B. In vivo delivery of tATP7B to WD mice by AAV8 vectors corrected their copper metabolisms and significantly rescued copper accumulation-related syndromes, including reduced urinary copper excretion, increased serum ceruloplasmin, and improved liver damages. Thus, our study demonstrated that AAV gene therapy based on truncated ATP7B is a promising strategy in the treatment of WD.
Collapse
Affiliation(s)
- Yingying Leng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Li
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lifang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Xiao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyue Zheng
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengming Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiukui Hao
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shaohua Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|