1
|
Berounský K, Vacková I, Vištejnová L, Malečková A, Havránková J, Klein P, Kolinko Y, Petrenko Y, Pražák Š, Hanák F, Přidal J, Havlas V. Autologous Mesenchymal Stromal Cells Immobilized in Plasma-Based Hydrogel for the Repair of Articular Cartilage Defects in a Large Animal Model. Physiol Res 2023; 72:485-495. [PMID: 37795891 PMCID: PMC10634567 DOI: 10.33549/physiolres.935098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/02/2023] [Indexed: 01/05/2024] Open
Abstract
The treatment of cartilage defects in trauma injuries and degenerative diseases represents a challenge for orthopedists. Advanced mesenchymal stromal cell (MSC)-based therapies are currently of interest for the repair of damaged cartilage. However, an approved system for MSC delivery and maintenance in the defect is still missing. This study aimed to evaluate the effect of autologous porcine bone marrow MSCs anchored in a commercially available polyglycolic acid-hyaluronan scaffold (Chondrotissue®) using autologous blood plasma-based hydrogel in the repair of osteochondral defects in a large animal model. The osteochondral defects were induced in twenty-four minipigs with terminated skeletal growth. Eight animals were left untreated, eight were treated with Chondrotissue® and eight received Chondrotissue® loaded with MSCs. The animals were terminated 90 days after surgery. Macroscopically, the untreated defects were filled with newly formed tissue to a greater extent than in the other groups. The histological evaluations showed that the defects treated with Chondrotissue® and Chondrotissue® loaded with pBMSCs contained a higher amount of hyaline cartilage and a lower amount of connective tissue, while untreated defects contained a higher amount of connective tissue and a lower amount of hyaline cartilage. In addition, undifferentiated connective tissue was observed at the edges of defects receiving Chondrotissue® loaded with MSCs, which may indicate the extracellular matrix production by transplanted MSCs. The immunological analysis of the blood samples revealed no immune response activation by MSCs application. This study demonstrated the successful and safe immobilization of MSCs in commercially available scaffolds and defect sites for cartilage defect repair.
Collapse
Affiliation(s)
- K Berounský
- Motol University Hospital, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Al-Mutheffer EA, Reinwald Y, El Haj AJ. Donor variability of ovine bone marrow derived mesenchymal stem cell - implications for cell therapy. Int J Vet Sci Med 2023; 11:23-37. [PMID: 37092030 PMCID: PMC10114964 DOI: 10.1080/23144599.2023.2197393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/20/2023] [Indexed: 04/25/2023] Open
Abstract
It is assumed that all species, including sheep, demonstrate significant variation between individuals including the characteristics of their bone marrow-derived mesenchymal stem cells (BM-MSCs). These differences may account for limited success in pre-clinical animal studies and may also impact on treatment strategies that are used within regenerative medicine. This study investigates variations between ovine MSCs (oMSCs) isolated from 13 English Mule sheep donors by studying cell viability, expansion, the cells' trilineage differentiation potential and the expression of cell surface markers. In addition to the primary objective, this article also compares various differentiation media used for the trilineage differentiation of oMSCs. In this study, a clear individual variation between the sheep donors regarding oMSCs characterization, tri-lineage differentiation potential and marker expression was effectively demonstrated. The results set out to systematically explore the ovine mesenchymal stem cell population derived from multiple donors. With this information, it is possible to start addressing the issues of personalized approaches to regenerative therapies.
Collapse
Affiliation(s)
- E’atelaf A. Al-Mutheffer
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK
- Department of Surgery and Obstetrics, College of Veterinary Medicine, Baghdad University, Baghdad, Iraq
| | - Yvonne Reinwald
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK
- School of Science and Technology, Department of Engineering, Nottingham Trent University Nottingham, Nottingham, UK
| | - Alicia J. El Haj
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, UK
- School of Chemical Engineering, Healthcare Technology Institute, Institute of Translational Medicine Birmingham University, Birmingham, UK
| |
Collapse
|
3
|
Brown LL. Adipose-Derived Stromal Stem Cells. Regen Med 2023. [DOI: 10.1007/978-3-030-75517-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
4
|
van Schaik TJA, Gaul F, Dorthé EW, Lee EE, Grogan SP, D’Lima DD. Development of an Ex Vivo Murine Osteochondral Repair Model. Cartilage 2021; 12:112-120. [PMID: 30373381 PMCID: PMC7755972 DOI: 10.1177/1947603518809402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Mouse models are commonly used in research applications due to the relatively low cost, highly characterized strains, as well as the availability of many genetically modified phenotypes. In this study, we characterized an ex vivo murine osteochondral repair model using human infrapatellar fat pad (IPFP) progenitor cells. DESIGN Femurs from euthanized mice were removed and clamped in a custom multidirectional vise to create cylindrical osteochondral defects 0.5 mm in diameter and 0.5 mm deep in both condyles. The IPFP contains progenitors that are a promising cell source for the repair of osteochondral defects. For proof of concept, human IPFP-derived progenitor cells, from osteoarthritic (OA) patients, cultured as pellets, were implanted into the defects and cultured in serum-free medium with TGFβ3 for 3 weeks and then processed for histology and immunostaining. RESULTS The custom multidirectional vise enabled reproducible creation of osteochondral defects in murine femoral condyles. Implantation of IPFP-derived progenitor cells led to development of cartilaginous tissue with Safranin O staining and deposition of collagen type II in the extracellular matrix. CONCLUSIONS We showed feasibility in creating ex vivo osteochondral defects and demonstrated the regenerative potential of OA human IPFP-derived progenitors in mouse femurs. The murine model can be used to study the effects of aging and OA on tissue regeneration and to explore molecular mechanisms of cartilage repair using genetically modified mice.
Collapse
Affiliation(s)
- Thomas J. A. van Schaik
- Orthopaedic Research Laboratory, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Florian Gaul
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Erik W. Dorthé
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Emily E. Lee
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Shawn P. Grogan
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Darryl D. D’Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic, La Jolla, CA, USA,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA,Darryl D. D’Lima, Scripps Health, Shiley Center for Orthopaedic Research and Education at Scripps Clinic, 10666 North Torrey Pines Road, MS126, La Jolla, CA 92027, USA.
| |
Collapse
|
5
|
Mardones R, Giai Via A, Pipino G, Jofre CM, Muñoz S, Narvaez E, Maffulli N. BM-MSCs differentiated to chondrocytes for treatment of full-thickness cartilage defect of the knee. J Orthop Surg Res 2020; 15:455. [PMID: 33023626 PMCID: PMC7539404 DOI: 10.1186/s13018-020-01852-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/30/2020] [Indexed: 01/06/2023] Open
Abstract
Background Full-thickness articular cartilage injury of the knee is a major cause of disability. The aim of this study is to assess the outcome of patients treated with differentiated to chondrocytes bone marrow mesenchymal stem cells (BM-MSCs) cultured on a collagen type I/III (Chondro-Gide®) scaffold. The secondary aim was to confirm the absence of adverse events. Methods Fifteen patients (19 knees) with symptomatic full-thickness cartilage defects of the knee were enrolled. Bone marrow was harvested from the iliac crest, BM-MSCs were prepared, and expanded cells were grown in a standard medium or in a standard culture medium containing TGF-β. BM-MSCs differentiated to chondrocytes were seeded in a porcine collagen type I/III scaffold (Chondro-Gide®) and cultured in TGF-β containing media. After 4 weeks, the membrane was sutured on the cartilage defect. All patients underwent plain radiographs (antero-posterior, lateral, and axial view of the patella) and MRI of the affected knee. The Oxford knee score, the Lyhsolm scale, and the VAS score were administered to all patients. At final follow-up a MRI for the study of articular cartilage was undertaken. Results The mean size of the cartilage lesions was 20 × 17 mm (range, 15 × 10 mm–30 × 30 mm). At final follow-up, the median Oxford knee score and Lyhsolm scale scores significantly improved from 29 (range 12–39; SD 7.39) to 45 (range 24–48; SD 5.6) and from 55.5 (range 25–81; SD 17.7) to 94.5 (58–100; SD 10.8), respectively. Pain, according to the VAS score, significantly improved. Sixty percent of patients reported their satisfaction as excellent, 20% as good, 14% as fair, and 1 patient as poor. Conclusion The treatment of full-thickness chondral injuries of the knee with differentiated to chondrocytes BM-MSCs and Chondro-Gide® scaffold showed encouraging outcomes. Further studies involving more patients, and with longer follow-up, are required to evaluate the effectiveness of the treatment and the long-term results.
Collapse
Affiliation(s)
| | - Alessio Giai Via
- Department of Orthopaedic Surgery and Traumatology, San Camillo-Fortalini Hospital, Rome, Italy.
| | - Gennaro Pipino
- UCM Malta, Campus of Lugano, Lugano, Switzerland.,Department of Orthopaedic Surgery and Traumatology, Villa Regina Hospital, Bologna, Italy.,Department of Orthopedics and Physiotherapy, UCM University, Msida, Malta
| | - Claudio M Jofre
- Regenerative Cell Therapy Center, Clinica Las Condes, Santiago, Chile
| | - Sara Muñoz
- Department of Radiology, Clinica Las Condes, Lo Fontecilla 441, Las Condes, Santiago de Chile, Chile
| | - Edgar Narvaez
- Regenerative Cell Therapy Center, Clinica Las Condes, Santiago, Chile
| | - Nicola Maffulli
- Institute of Science and Technology in Medicine, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, England.,Department of Orthopedics and Physiotherapy, UCM University, Msida, Malta
| |
Collapse
|
6
|
van Geffen EW, van Caam APM, Vitters EL, van Beuningen HM, van de Loo FA, van Lent PLEM, Koenders MI, van der Kraan PM. Interleukin-37 Protects Stem Cell-Based Cartilage Formation in an Inflammatory Osteoarthritis-Like Microenvironment. Tissue Eng Part A 2019; 25:1155-1166. [DOI: 10.1089/ten.tea.2018.0267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Elly Louise Vitters
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Henk Maria van Beuningen
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fons Adrianus van de Loo
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Marije Ingrid Koenders
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Mario van der Kraan
- Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
7
|
The Potential of Menstrual Blood-Derived Mesenchymal Stem Cells for Cartilage Repair and Regeneration: Novel Aspects. Stem Cells Int 2018; 2018:5748126. [PMID: 30627174 PMCID: PMC6304826 DOI: 10.1155/2018/5748126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/21/2018] [Indexed: 12/16/2022] Open
Abstract
Menstrual blood is a unique body fluid that contains mesenchymal stem cells (MSCs). These cells have attracted a great deal of attention due to their exceptional advantages including easy access and frequently accessible sample source and no need for complex ethical and surgical interventions, as compared to other tissues. Menstrual blood-derived MSCs possess all the major stem cell properties and even have a greater proliferation and differentiation potential as compared to bone marrow-derived MSCs, making them a perspective tool in a further clinical practice. Although the potential of menstrual blood stem cells to differentiate into a large variety of tissue cells has been studied in many studies, their chondrogenic properties have not been extensively explored and investigated. Articular cartilage is susceptible to traumas and degenerative diseases, such as osteoarthritis, and has poor self-regeneration capacity and therefore requires more effective therapeutic technique. MSCs seem promising candidates for cartilage regeneration; however, no clinically effective stem cell-based repair method has yet emerged. This chapter focuses on studies in the field of menstrual blood-derived MSCs and their chondrogenic differentiation potential and suitability for application in cartilage regeneration. Although a very limited number of studies have been made in this field thus far, these cells might emerge as an efficient and easily accessible source of multipotent cells for cartilage engineering and cell-based chondroprotective therapy.
Collapse
|
8
|
Type III Transforming Growth Factor- β Receptor RNA Interference Enhances Transforming Growth Factor β3-Induced Chondrogenesis Signaling in Human Mesenchymal Stem Cells. Stem Cells Int 2018; 2018:4180857. [PMID: 30158983 PMCID: PMC6109468 DOI: 10.1155/2018/4180857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/06/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022] Open
Abstract
The type III transforming growth factor-β (TGF-β) receptor (TβRIII), a coreceptor of the TGF-β superfamily, is known to bind TGF-βs and regulate TGF-β signaling. However, the regulatory roles of TβRIII in TGF-β-induced mesenchymal stem cell (MSC) chondrogenesis have not been explored. The present study examined the effect of TβRIII RNA interference (RNAi) on TGF-β3-induced human MSC (hMSC) chondrogenesis and possible signal mechanisms. A lentiviral expression vector containing TβRIII small interfering RNA (siRNA) (SiTβRIII) or a control siRNA (SiNC) gene was constructed and infected into hMSCs. The cells were cultured in chondrogenic medium containing TGF-β3 or control medium. TβRIII RNAi significantly enhanced TGF-β3-induced chondrogenic differentiation of hMSCs, the ratio of type II (TβRII) to type I (TβRI) TGF-β receptors, and phosphorylation levels of Smad2/3 as compared with cells infected with SiNC. An inhibitor of the TGF-β signal, SB431542, not only inhibited TβRIII RNAi-stimulated TGF-β3-mediated Smad2/3 phosphorylation but also inhibited the effects of TβRIII RNAi on TGF-β3-induced chondrogenic differentiation. These results demonstrate that TβRIII RNAi enhances TGF-β3-induced chondrogenic differentiation in hMSCs by activating TGF-β/Smad2/3 signaling. The finding points to the possibility of modifying MSCs by TβRIII knockdown as a potent future strategy for cell-based cartilage tissue engineering.
Collapse
|
9
|
Zeineddine HA, Frush TJ, Saleh ZM, El-Othmani MM, Saleh KJ. Applications of Tissue Engineering in Joint Arthroplasty: Current Concepts Update. Orthop Clin North Am 2017; 48:275-288. [PMID: 28577777 DOI: 10.1016/j.ocl.2017.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Research in tissue engineering has undoubtedly achieved significant milestones in recent years. Although it is being applied in several disciplines, tissue engineering's application is particularly advanced in orthopedic surgery and in degenerative joint diseases. The literature is full of remarkable findings and trials using tissue engineering in articular cartilage disease. With the vast and expanding knowledge, and with the variety of techniques available at hand, the authors aimed to review the current concepts and advances in the use of cell sources in articular cartilage tissue engineering.
Collapse
Affiliation(s)
- Hussein A Zeineddine
- Department of Surgery, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | - Todd J Frush
- Department of Orthopaedics and Sports Medicine, Detroit Medical Center, University Health Center (UHC) 9B, 4201 Saint Antoine Street, Detroit, MI 48201-2153, USA
| | - Zeina M Saleh
- Department of Surgery, American University of Beirut Medical Center, Bliss Street, Riad El-Solh, Beirut 11072020, Lebanon
| | - Mouhanad M El-Othmani
- Department of Orthopaedics and Sports Medicine, Musculoskeletal Institute of Excellence, Detroit Medical Center, University Health Center (UHC) 9B, 4201 Saint Antoine Street, Detroit, MI 48201-2153, USA
| | - Khaled J Saleh
- Department of Orthopaedics and Sports Medicine, Detroit Medical Center, University Health Center (UHC) 9B, 4201 Saint Antoine Street, Detroit, MI 48201-2153, USA.
| |
Collapse
|