1
|
Fang ZY, Zhang M, Liu JN, Zhao X, Zhang YQ, Fang L. Tanshinone IIA: A Review of its Anticancer Effects. Front Pharmacol 2021; 11:611087. [PMID: 33597880 PMCID: PMC7883641 DOI: 10.3389/fphar.2020.611087] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Tanshinone IIA (Tan IIA) is a pharmacologically lipophilic active constituent isolated from the roots and rhizomes of the Chinese medicinal herb Salvia miltiorrhiza Bunge (Danshen). Tan IIA is currently used in China and other neighboring countries to treat patients with cardiovascular system, diabetes, apoplexy, arthritis, sepsis, and other diseases. Recently, it was reported that tan IIA could have a wide range of antitumor effects on several human tumor cell lines, but the research of the mechanism of tan IIA is relatively scattered in cancer. This review aimed to summarize the recent advances in the anticancer effects of tan IIA and to provide a novel perspective on clinical use of tan IIA.
Collapse
Affiliation(s)
- Zhong-Ying Fang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China.,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miao Zhang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Jia-Ning Liu
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Xue Zhao
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Yong-Qing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Fang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China.,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Pharmacological basis of tanshinone and new insights into tanshinone as a multitarget natural product for multifaceted diseases. Biomed Pharmacother 2020; 130:110599. [PMID: 33236719 DOI: 10.1016/j.biopha.2020.110599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Drug development has long included the systematic exploration of various resources. Among these, natural products are one of the most important resources from which novel agents are developed due to the multiple pharmacologic effects of these natural products on diseases. Tanshinone, a representative natural product, is the main compound extracted from the dried root and rhizome of Salvia miltiorrhiza Bge. Research on tanshinone began in the early 1930s. With the in-depth investigation of an increasing number of identified analogs, tanshinone has demonstrated a wide variety of bioactivities and contradicted the saying, 'You can't teach an old dog new tricks'. This review is focused on the pharmacological action of tanshinone and status of research on tanshinone in recent years. The mechanism of tanshinone has also drawn much attention, with the findings of representative targets and pathways of tanshinone. The most recent studies have comprehensively shown that tanshinone can be used to treat leukemia and solid carcinoma, protect against cardiovascular and cerebrovascular diseases, and alleviate liver- and kidney-related diseases, among its other effects. Multiple signaling pathways, including antiproliferative, antiapoptotic, anti-inflammatory, and antioxidative stress pathways, are involved in its actions.
Collapse
|
3
|
Cai Y, Zhang W, Chen Z, Shi Z, He C, Chen M. Recent insights into the biological activities and drug delivery systems of tanshinones. Int J Nanomedicine 2016; 11:121-30. [PMID: 26792989 PMCID: PMC4708214 DOI: 10.2147/ijn.s84035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Tanshinones, the major lipid-soluble pharmacological constituents of the Chinese medicinal herb Tanshen (Salvia miltiorrhiza), have attracted growing scientific attention because of the prospective biomedical applications of these compounds. Numerous pharmacological activities, including anti-inflammatory, anticancer, and cardio-cerebrovascular protection activities, are exhibited by the three primary bioactive constituents among the tanshinones, ie, tanshinone I (TNI), tanshinone IIA (TNIIA), and cryptotanshinone (CPT). However, due to their poor solubility and low dissolution rate, the clinical applications of TNI, TNIIA, and CPT are limited. To solve these problems, many studies have focused on loading tanshinones into liposomes, nanoparticles, microemulsions, cyclodextrin inclusions, solid dispersions, and so on. In this review, we aim to offer an updated summary of the biological activities and drug delivery systems of tanshinones to provide a reference for these constituents in clinical applications.
Collapse
Affiliation(s)
- Yuee Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Wenji Zhang
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Zirong Chen
- Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL, USA
| | - Zhi Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, People’s Republic of China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China
| |
Collapse
|
4
|
Ho TF, Chang CC. A promising "TRAIL" of tanshinones for cancer therapy. Biomedicine (Taipei) 2015; 5:23. [PMID: 26621311 PMCID: PMC4664605 DOI: 10.7603/s40681-015-0023-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/30/2015] [Indexed: 12/11/2022] Open
Abstract
An ideal cancer therapy specifically targets cancer cells while sparing normal
tissues. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) elicits
apoptosis by engaging its cognate death receptors (DRs—namely, DR4 and DR5. The
cancer cell-selective proapoptotic action of TRAIL is highly attractive for cancer
therapy, but clinical application of TRAIL is rather limited due to tumors’ inherent
or acquired TRAIL resistance. Combining TRAIL with agents that reverse resistance to
it has proved promising in the sensitization of TRAIL-induced apoptosis. Noteworthy,
natural compounds have already been validated as potential resources for TRAIL
sensitizers. In this review, we focus on the recently identified TRAILsensitizing
effect of tanshinones, the anticancer ingredients of the medicinal plant Salvia miltiorrhiza (Danshen in Chinese). Research from
our laboratories and others have revealed the synergy of a tanshinones-TRAIL
combination in diverse types of cancer cells through up-regulation of DR5 and/or
down-regulation of antiapoptotic proteins such as survivin. Thus, in addition to
their anticancer mechanisms, tanshinones as TRAIL sensitizers hold great potential
to be translated to TRAIL-based therapeutic modalities for combatting cancer.
Collapse
Affiliation(s)
- Tsing-Fen Ho
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, 406, Taichung, Taiwan
| | - Chia-Che Chang
- Institute of Biomedical Sciences, National Chung Hsing University, No. 250, Kuo-Kuang Road, 402, Taichung, Taiwan. .,Agricultural Biotechnology Center, National Chung Hsing University, 402, Taichung, Taiwan. .,Ph.D. Program in Translational Medicine, National Chung Hsing University, 402, Taichung, Taiwan. .,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, 402, Taichung, Taiwan.
| |
Collapse
|
5
|
Zhang K, Li J, Meng W, Xing H, Yang Y. Tanshinone IIA inhibits acute promyelocytic leukemia cell proliferation and induces their apoptosis in vivo. Blood Cells Mol Dis 2015; 56:46-52. [PMID: 26603724 DOI: 10.1016/j.bcmd.2015.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/09/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
Abstract
Tanshinone IIA (TanIIA) is a traditional Chinese agent and has been widely used for treatment of cardiovascular diseases. Our previous study has shown that TanIIA can induce the differentiation of acute promyelocytic leukemia (APL) cells by increasing C/EBPβ expression and induce APL cell apoptosis in vitro. In this study, we evaluated the activity of TanIIA against APL in vivo. We found that treatment with TanIIA prevented APL-mediated reduction in body weights. Treatment with TanIIA inhibited the proliferation of APL cells and triggered APL cell apoptosis and differentiation in vivo. Treatment with TanIIA significantly prolonged the survival of APL-bearing mice. Our data indicate that TanIIA has potent anti-APL activity with little adverse effect.
Collapse
Affiliation(s)
- Kaiji Zhang
- Department of Hematology, Guizhou Medical University Affiliated Hospital, Guiyang 550004, Guizhou Province, China
| | - Jian Li
- Department of Hematology, West China Medical School, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hongyun Xing
- Department of Hematology, Sichuan Medical University affiliated hospital, Luzhou 646000, Sichuan Province, China
| | - Yiming Yang
- Department of Hematology, West China Medical School, Sichuan University, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
6
|
Chang CC, Kuan CP, Lin JY, Lai JS, Ho TF. Tanshinone IIA Facilitates TRAIL Sensitization by Up-regulating DR5 through the ROS-JNK-CHOP Signaling Axis in Human Ovarian Carcinoma Cell Lines. Chem Res Toxicol 2015. [PMID: 26203587 DOI: 10.1021/acs.chemrestox.5b00150] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tanshinone IIA (TIIA) extracted from Salvia miltiorrhiza has been shown to possess antitumor and TRAIL-sensitizing activity. The involvement of DR5 in the mechanism whereby TIIA exerts its effects is unknown. This study aimed to explore the mechanism underlying TIIA augmentation of TRAIL-induced cell death in ovarian carcinoma cells. Cell viability was determined by MTS assay. Real-time RT-PCR and Western blotting were used to assess the mRNA and protein expression of relating signaling proteins. Transcriptional activation was explored by a dual-luciferase reporter assay. We found that TIIA sensitized human ovarian carcinoma cells to TRAIL-induced extrinsic apoptosis. Combined treatment with subtoxic concentrations of TIIA and TRAIL was more effective than single treatments with respect to cytotoxicity, clonogenic inhibition, and the induction of caspase-8 and PARP activity in ovarian carcinoma cell lines TOV-21G and SKOV3. TIIA induced DR5 protein and mRNA expression in a concentration-dependent manner. DR5/Fc treatment markedly suppressed the TRAIL cytotoxicity enhanced by TIIA. These results indicate that DR5 plays an essential role in TIIA-induced TRAIL sensitization and that induction of DR5 by TIIA is mediated through the up-regulation of CCAAT/enhancer-binding protein homologous protein (CHOP). Knockdown of CHOP gene expression by shRNA attenuated DR5 up-regulation and rescued cell viability under the treatment of TIIA-TRAIL combination. TIIA promoted JNK-mediated signaling to up-regulated CHOP and thereby inducing DR5 expression as shown by the ability of a JNK inhibitor to potently suppress the TIIA-mediated activation of CHOP and DR5. In addition, the quenching of ROS using NAC prevented the induction of JNK phosphorylation and CHOP induction. Furthermore, inhibition of ROS by NAC significantly attenuated TRAIL sensitization by TIIA. Taken together, these data suggest that TIIA enhances TRAIL-induced apoptosis by upregulating DR5 receptors through the ROS-JNK-CHOP signaling axis in human ovarian carcinoma cells.
Collapse
Affiliation(s)
| | - Cheng-Ping Kuan
- #Division of Biotechnology, Taiwan Agricultural Research Institute, Wufeng, Taiwan
| | - Jyun-Yi Lin
- †Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Jui-Sheng Lai
- #Division of Biotechnology, Taiwan Agricultural Research Institute, Wufeng, Taiwan
| | - Tsing-Fen Ho
- †Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| |
Collapse
|
7
|
Akaberi M, Mehri S, Iranshahi M. Multiple pro-apoptotic targets of abietane diterpenoids from Salvia species. Fitoterapia 2015; 100:118-32. [DOI: 10.1016/j.fitote.2014.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 01/30/2023]
|
8
|
Kai G, Hao X, Cui L, Ni X, Zekria D, Wu JY. WITHDRAWN: Metabolic engineering and biotechnological approaches for production of bioactive diterpene tanshinones in Salvia miltiorrhiza. Biotechnol Adv 2014:S0734-9750(14)00150-5. [PMID: 25305517 DOI: 10.1016/j.biotechadv.2014.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/02/2014] [Accepted: 10/05/2014] [Indexed: 01/03/2023]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Guoyin Kai
- Laboratory of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China.
| | - Xiaolong Hao
- Laboratory of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Lijie Cui
- Laboratory of Plant Biotechnology, Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Xiaoling Ni
- Department of General Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - David Zekria
- Department of General Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jian-Yong Wu
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
9
|
IRIYAMA NORIYOSHI, YUAN BO, YOSHINO YUTA, HATTA YOSHIHIRO, HORIKOSHI AKIRA, AIZAWA SHIN, TAKEI MASAMI, TAKEUCHI JIN, TAKAGI NORIO, TOYODA HIROO. Enhancement of differentiation induction and upregulation of CCAAT/enhancer-binding proteins and PU.1 in NB4 cells treated with combination of ATRA and valproic acid. Int J Oncol 2013; 44:865-73. [DOI: 10.3892/ijo.2013.2236] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 12/02/2013] [Indexed: 11/05/2022] Open
|
10
|
Chen X, Guo J, Bao J, Lu J, Wang Y. The anticancer properties of Salvia miltiorrhiza Bunge (Danshen): a systematic review. Med Res Rev 2013; 34:768-94. [PMID: 24123144 DOI: 10.1002/med.21304] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Salvia miltiorrhiza Bunge (Danshen in Chinese) is a classical Huoxue Huayu (a traditional Chinese medical term means promoting blood circulation and removing blood stasis) herb with 1000 years of clinical application. It mainly contains two groups of ingredients: the hydrophilic phenolic acids and the lipophilic tanshinones. Both groups have demonstrated multiple bioactivities, such as antioxidative stress, antiplatelet aggregation, anti-inflammation, among others. Recent data have demonstrated that its lipophilic compounds, especially the tanshinones, show potent anticancer activities both in vitro and in vivo. The anticancer effects of the hydrophilic phenolic acids have also been reported. Furthermore, tanshinones provide structural skeletons for chemical modifications, allowing for a series of derivatives of interests. This review provides a systematic summary of the anticancer profile and the underlying mechanisms of the bioactive compounds isolated from Danshen with special emphasis on tanshinones, aiming to bring new insights for further research and development of this ancient herb.
Collapse
Affiliation(s)
- Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | | | | | | | | |
Collapse
|
11
|
Zhou LH, Hu Q, Sui H, Ci SJ, Wang Y, Liu X, Liu NN, Yin PH, Qin JM, Li Q. Tanshinone II--a inhibits angiogenesis through down regulation of COX-2 in human colorectal cancer. Asian Pac J Cancer Prev 2013; 13:4453-8. [PMID: 23167360 DOI: 10.7314/apjcp.2012.13.9.4453] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Angiogenesis plays a significant role in colorectal cancer (CRC) and cyclooxygenase-2 (COX-2) appears to be involved with multiple aspects of CRC angiogenesis. Our aim was to investigate the inhibitory effects of Tan II-A (Tanshinone II-A, Tan II-A) on tumor growth in mice, as well as alteration of expression of COX-2 and VEGF in CRC. We established the mice xenograft model of C26 CRC cell line, and injected 0.5, 1, 2mg/kg of Tan II-A and 1mg/kg of 5-FU in respectively in vivo. Then, we assayed tumor weight and volume, and evaluated microvascular density and expression of VEGF. COX-2 promoter and COX-2 plasmids were transfected into HCT-116 cells, followed by detection of COX-2 promoter activity by chemiluminescence, and detection of COX-2 mRNA expression by fluorescence quantitative PCR. Taken together, the results showed Tan II-A could inhibit tumor growth and suppress the VEGF level in vivo. HCT-116 cell experiments showed marked inhibitory effects of Tan II-A on COX-2 and VEGF in a dose-dependent manner. The results indicate that Tan II-A can effectively inhibit tumor growth and angiogenesis of human colorectal cancer via inhibiting the expression level of COX-2 and VEGF.
Collapse
Affiliation(s)
- Li-Hong Zhou
- Clinic Oncology, Putuo Hospital and Cancer Institute, Shanghai University of Traditional Chinese Medicine, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tu J, Xing Y, Guo Y, Tang F, Guo L, Xi T. TanshinoneIIA ameliorates inflammatory microenvironment of colon cancer cells via repression of microRNA-155. Int Immunopharmacol 2012; 14:353-61. [DOI: 10.1016/j.intimp.2012.08.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/25/2012] [Accepted: 08/14/2012] [Indexed: 11/25/2022]
|
13
|
Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP, Wang YT. Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs 2012; 21:1801-18. [DOI: 10.1517/13543784.2012.727395] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Abstract
Tanshinones are a class of abietane diterpene compound isolated from Salvia miltiorrhiza (Danshen or Tanshen in Chinese), a well-known herb in Traditional Chinese Medicine (TCM). Since they were first identified in the 1930s, more than 40 lipophilic tanshinones and structurally related compounds have been isolated from Danshen. In recent decades, numerous studies have been conducted to investigate the isolation, identification, synthesis and pharmacology of tanshinones. In addition to the well-studied cardiovascular activities, tanshinones have been investigated more recently for their anti-cancer activities in vitro and in vivo. In this review, we update the herbal and alternative sources of tanshinones, and the pharmacokinetics of selected tanshinones. We discuss anti-cancer properties and identify critical issues for future research. Whereas previous studies have suggested anti-cancer potential of tanshinones affecting multiple cellular processes and molecular targets in cell culture models, data from in vivo potency assessment experiments in preclinical models vary greatly due to lack of uniformity of solvent vehicles and routes of administration. Chemical modifications and novel formulations had been made to address the poor oral bioavailability of tanshinones. So far, human clinical trials have been far from ideal in their design and execution for the purpose of supporting an anti-cancer indication of tanshinones.
Collapse
|
15
|
Liu C, Li J, Wang L, Wu F, Huang L, Xu Y, Ye J, Xiao B, Meng F, Chen S, Yang M. Analysis of tanshinone IIA induced cellular apoptosis in leukemia cells by genome-wide expression profiling. Altern Ther Health Med 2012; 12:5. [PMID: 22248096 PMCID: PMC3398275 DOI: 10.1186/1472-6882-12-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 01/16/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Tanshinone IIA (Tan IIA) is a diterpene quinone extracted from the root of Salvia miltiorrhiza, a Chinese traditional herb. Although previous studies have reported the anti-tumor effects of Tan IIA on various human cancer cells, the underlying mechanisms are not clear. The current study was undertaken to investigate the molecular mechanisms of Tan IIA's apoptotic effects on leukemia cells in vitro. METHODS The cytotoxicity of Tan IIA on different types of leukemia cell lines was evaluated by the 3-[4,5-dimethylthiazol-2,5]-diphenyl tetrazolium bromide (MTT) assay on cells treated without or with Tan IIA at different concentrations for different time periods. Cellular apoptosis progression with and without Tan IIA treatment was analyzed by Annexin V and Caspase 3 assays. Gene expression profiling was used to identify the genes regulated after Tan IIA treatment and those differentially expressed among the five cell lines. Confirmation of these expression regulations was carried out using real-time quantitative PCR and ELISA. The antagonizing effect of a PXR inhibitor L-SFN on Tan IIA treatment was tested using Colony Forming Unit Assay. RESULTS Our results revealed that Tan IIA had different cytotoxic activities on five types of leukemia cells, with the highest toxicity on U-937 cells. Tan IIA inhibited the growth of U-937 cells in a time- and dose-dependent manner. Annexin V and Caspase-3 assays showed that Tan IIA induced apoptosis in U-937 cells. Using gene expression profiling, 366 genes were found to be significantly regulated after Tan IIA treatment and differentially expressed among the five cell lines. Among these genes, CCL2 was highly expressed in untreated U-937 cells and down-regulated significantly after Tan IIA treatment in a dose-dependent manner. RT-qPCR analyses validated the expression regulation of 80% of genes. Addition of L-sulforaphane (L-SFN), an inhibitor of Pregnane×receptor (PXR) significantly attenuated Tan IIA's effects using colony forming assays. CONCLUSIONS Tan IIA has significant growth inhibition effects on U-937 cells through the induction of apoptosis. And Tan IIA-induced apoptosis might result from the activation of PXR, which suppresses the activity of NF-κB and lead to the down-regulation of CCL2 expression.
Collapse
|
16
|
Yuan C, Zhang YS, Cheng YN, Xue X, Xu WF, Qu XJ. A112, a tamibarotene dimethylaminoethyl ester, may inhibit human leukemia cell growth more potently than tamibarotene. Leuk Lymphoma 2011; 53:295-304. [DOI: 10.3109/10428194.2011.614707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|