1
|
Stathis CJ, Zhu H, Carlin K, Phan TL, Toomey D, Hill JA, Zerr DM. A systematic review and meta-analysis of HHV-6 and mortality after hematopoietic cell transplant. Bone Marrow Transplant 2024; 59:1683-1693. [PMID: 39245683 PMCID: PMC11611739 DOI: 10.1038/s41409-024-02398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Human herpesvirus-6B (HHV-6B) reactivation has been associated with non-relapse mortality (NRM) and overall mortality (OM) following allogeneic hematopoietic stem cell transplant (HCT). We performed a systematic review and meta-analysis to better quantify the association. Studies were included if they systematically tested a cohort of HCT recipients for HHV-6 infection or reactivation and described mortality for patients with and without HHV-6B. Random effects models were used to assess the pooled effect of HHV-6B positivity on each outcome of interest. Bayesian aggregation was additionally performed if models included 10 or fewer studies. Eight studies were included in the NRM analysis, which demonstrated a significant association between HHV-6 detection and NRM (pooled effect: 1.84; 95% CI: 1.29-2.62) without significant heterogeneity (I2 = 0.0%, p = 0.55). A Bayesian aggregation of the raw data used to construct the NRM random effects model supported these findings (95% credible interval: 0.15-1.13). Twenty-five studies were included in OM analysis, which showed a significant positive association (pooled effect: 1.37; 95% CI: 1.07-1.76), though considerable heterogeneity was observed (I2 = 36.7%, p < 0.05). HHV-6 detection is associated with NRM and OM following HCT. Randomized trials are warranted to evaluate if preventing or treating HHV-6B reactivation improves outcomes.
Collapse
Affiliation(s)
- Christopher J Stathis
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- HHV-6 Foundation, Santa Barbara, CA, 93108, USA
| | - Harrison Zhu
- HHV-6 Foundation, Santa Barbara, CA, 93108, USA
- Baylor College of Medicine, Houston, TX, USA
| | | | - Tuan L Phan
- HHV-6 Foundation, Santa Barbara, CA, 93108, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Danny Toomey
- HHV-6 Foundation, Santa Barbara, CA, 93108, USA
- Geisinger Commonwealth School of Medicine, Scranton, PA, 18509, USA
| | - Joshua A Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Danielle M Zerr
- Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Zhu H, Ren V. Immunopathogenic Insights on Preferential Human Herpesvirus-6 Reactivation in Drug Rash With Eosinophilia and Systemic Symptoms: A Scoping Review. J Cutan Med Surg 2023; 27:388-398. [PMID: 37231539 PMCID: PMC10523827 DOI: 10.1177/12034754231177590] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/14/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Human herpesvirus-6 (HHV-6) is a ubiquitous lymphotropic betaherpesvirus that can reactivate in drug rash with eosinophilia and systemic symptoms (DRESS). Despite recent publications advancing our understanding of HHV-6 in DRESS, the exact role of HHV-6 in disease pathogenesis remains unclear. METHODS A scoping review with the PubMed query "(HHV 6 AND (drug OR DRESS OR DIHS)) OR (HHV6 AND (drug OR DRESS OR DIHS))" was conducted in accordance with PRISMA guidelines. Articles containing original data on at least one DRESS patient with HHV-6 testing were included. RESULTS Our search returned a total of 373 publications, of which 89 met eligibility criteria. HHV-6 reactivation occurred in 63% of DRESS patients (n = 748), which was significantly more often than other herpesviruses. HHV-6 reactivation was associated with worse outcomes and greater severity in controlled studies. Case reports have demonstrated sometimes fatal HHV-6-related multi-organ involvement. Temporally, HHV-6 reactivation typically occurs 2 to 4 weeks after DRESS onset and has been linked to markers of immunologic signaling, such as OX40 (CD134), an HHV-6 entry receptor. Efficacy of antiviral or immunoglobulin treatment has only been demonstrated anecdotally, and steroid use may affect HHV-6 reactivation. CONCLUSION HHV-6 is implicated in DRESS more than in any other dermatologic condition. It is still unclear whether HHV-6 reactivation is cause or consequence of DRESS dysregulation. Similar pathogenic mechanisms precipitated by HHV-6 in other contexts may be relevant in DRESS. Future randomized controlled studies to assess effects of viral suppression on clinical outcomes is needed.
Collapse
Affiliation(s)
- Harrison Zhu
- School of Medicine, Baylor College of Medicine, Houston, TX, USA
- HHV-6 Foundation, Santa Barbara, CA, USA
| | - Vicky Ren
- Department of Dermatology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Tripathi T, Yin W, Xue Y, Zurawski S, Fujita H, Hanabuchi S, Liu YJ, Oh S, Joo H. Central Roles of OX40L-OX40 Interaction in the Induction and Progression of Human T Cell-Driven Acute Graft-versus-Host Disease. Immunohorizons 2019; 3:110-120. [PMID: 31240276 DOI: 10.4049/immunohorizons.1900001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Graft-versus-host disease (GVHD) is one of the major obstacles for the success of allogeneic hematopoietic stem cell transplantation. Here, we report that the interaction between OX40L and OX40 is of critical importance for both induction and progression of acute GVHD (aGVHD) driven by human T cells. Anti-human OX40L monoclonal antibody (hOX40L) treatment could thus effectively reduce the disease severity in a xenogeneic-aGVHD (x-aGVHD) model in both preventative and therapeutic modes. Mechanistically, blocking OX40L-OX40 interaction with an anti-hOX40L antibody reduces infiltration of human T cells in target organs, including liver, gut, lung, and skin. It also decreases IL-21- and TNF-producing T cell responses, while promoting regulatory T cell (Treg) responses without compromising the cytolytic activity of CD8+ T cells. Single blockade of hOX40L was thus more effective than dual blockade of IL-21 and TNF in reducing the severity of aGVHD as well as mortality. Data from this study indicate that OX40L-OX40 interactions play a central role in the pathogenesis of aGVHD induced by human T cells. Therapeutic strategies that can efficiently interrupt OX40L-OX40 interaction in patients might have potential to provide patients with an improved clinical benefit.
Collapse
Affiliation(s)
- Trivendra Tripathi
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259.,Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Wenjie Yin
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Yaming Xue
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Sandra Zurawski
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Haruyuki Fujita
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Shino Hanabuchi
- Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - Yong-Jun Liu
- Baylor Institute for Immunology Research, Dallas, TX 75204; and.,Sanofi, Cambridge, MA 01701
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259.,Baylor Institute for Immunology Research, Dallas, TX 75204; and
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259; .,Baylor Institute for Immunology Research, Dallas, TX 75204; and
| |
Collapse
|
4
|
HHV-6B infection, T-cell reconstitution, and graft-vs-host disease after hematopoietic stem cell transplantation. Bone Marrow Transplant 2018; 53:1508-1517. [PMID: 29795424 DOI: 10.1038/s41409-018-0225-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/30/2022]
Abstract
Successful and sustained CD4+ T-cell reconstitution is associated with increased survival after hematopoietic cell transplantation (HCT), but opportunistic infections may adversely affect the time and extent of immune reconstitution. Human herpesvirus 6B (HHV-6B) efficiently infects CD4+ T cells and utilizes as a receptor CD134 (OX40), a member of the TNF superfamily that antagonizes regulatory T-cell (Treg) activity. Reactivation of HHV-6B has been associated with aberrant immune reconstitution and acute graft-versus-host disease (aGVHD) after HCT. Given that Treg counts are negatively correlated with aGVHD severity, we postulate that one mechanism for the poor CD4+ T-cell reconstitution observed shortly after transplant may be HHV-6B infection and depletion of peripheral (extra-thymic) CD4+ T cells, including a subpopulation of Treg cells. In turn, this may trigger a series of adverse events resulting in poor clinical outcomes such as severe aGVHD. In addition, recent evidence has linked HHV-6B reactivation with aberrant CD4+ T-cell reconstitution late after transplantation, which may be mediated by a different mechanism, possibly related to central (thymic) suppression of T-cell reconstitution. These observations suggest that aggressive management of HHV-6B reactivation in transplant patients may facilitate CD4+ T-cell reconstitution and improve the quality of life and survival of HCT patients.
Collapse
|
5
|
Phan TL, Carlin K, Ljungman P, Politikos I, Boussiotis V, Boeckh M, Shaffer ML, Zerr DM. Human Herpesvirus-6B Reactivation Is a Risk Factor for Grades II to IV Acute Graft-versus-Host Disease after Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis. Biol Blood Marrow Transplant 2018; 24:2324-2336. [PMID: 29684567 PMCID: PMC8934525 DOI: 10.1016/j.bbmt.2018.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
Abstract
Graft-versus-host disease (GVHD) is an important cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (HCT). Many studies have suggested that human herpesvirus-6B (HHV-6B) plays a role in acute GVHD (aGVHD) after HCT. Our objective was to systematically summarize and analyze evidence regarding HHV-6B reactivation and development of aGVHD. PubMed and EMBASE databases were searched using terms for HHV-6, HCT, and aGVHD, yielding 865 unique results. Case reports, reviews, articles focusing on inherited chromosomally integrated HHV-6, poster presentations, and articles not published in English were excluded. The remaining 467 articles were reviewed for the following requirements: a statistical analysis of HHV-6B reactivation and a GVHD was described, HHV-6B reactivation was defined by PCR, and blood (plasma, serum, or peripheral blood mononuclear cells) was used for HHV-6B PCR. Data were abstracted from publications that met these criteria (n = 33). Publications were assigned to 1 of 3 groups: (1) HHV-6B reactivation was analyzed as a time-dependent risk factor for subsequent aGVHD (n = 14), (2) aGVHD was analyzed as a time-dependent risk factor for subsequent HHV-6B reactivation (n = 1), and (3) analysis without temporal specification (n = 18). A statistically significant association (P < .05) between HHV-6B reactivation and aGVHD was observed in 10 of 14 studies (71%) in group 1, 0 of 1 study (0%) in Group 2, and 8 of 18 studies (44.4%) in Group 3. Of the 14 studies that analyzed HHV-6B as a risk factor for subsequent aGVHD, 11 performed a multivariate analysis and reported a hazard ratio, which reached statistical significance in 9 of these s tudies. Meta-analysis of these 11 studies demonstrated a statistically significant association between HHV-6B and subsequent grades II to IV aGVHD (hazard ratio, 2.65; 95% confidence interval, 1.89 to 3.72; P < .001).HHV-6B reactivation is associated with aGVHD, and when studies have a temporal component to their design, HHV-6B reactivation is associated with subsequent aGVHD. Further research is needed to investigate whether antiviral prophylaxis reduces incidence or severity of aGVHD.
Collapse
Affiliation(s)
- Tuan L Phan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana; HHV-6 Foundation, Santa Barbara, California
| | - Kristen Carlin
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, Washington
| | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden; Division of Hematology, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Politikos
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vicki Boussiotis
- Department of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Michael Boeckh
- Department of Medicine, Vaccine and Infectious Disease and Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
| | - Michele L Shaffer
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, Washington; Department of Statistics, University of Washington, Seattle, Washington
| | - Danielle M Zerr
- Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, Washington; Department of Pediatrics, University of Washington, Seattle, Washington.
| |
Collapse
|
6
|
Jia WH, Mao H, Chen WR, Yue XT, Wei XX, Li DP, Xu KL, Huang YH. [Study on the immune functions of dendritic cells regulated by histone deacetylase inhibitor Belinostat]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:41-46. [PMID: 29551032 PMCID: PMC7343123 DOI: 10.3760/cma.j.issn.0253-2727.2018.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 11/20/2022]
Abstract
Objective: To explore effects of histone deacetylase inhibitor Belinostat on the immunologic function of dendritic cells (DC) and its possible mechanism. Methods: Cultured mouse bone marrow-derived DC from C57BL/6 mouse in vitro. The experiments were divided into 0, 50, 100 nmol/L Belinostat + immature DC (imDC) group, and 0, 50, 100 nmol/L Belinostat mature DC (mDC). The changes of the ultrastructure of DC were observed by transmission electron microscope (TEM). Immunophenotype and CCR7 expression rate were detected by FCM, and the migration rate was observed by chemotaxis assay. The proliferation of lymphocytes stimulated by different DC was detected by mixed lymphocyte culture reaction. The cytokines in the culture supernatant, including TNF-α, IL-12 and IL-10, were examined by ELISA. RQ-PCR was used to examine the relative expression of mRNA in RelB. Results: Successful cultured and identified the qualified imDC and mDC. Belinostat decreased the expression of CCR7 on imDC [(25.82±7.25)% vs (50.44±5.61)% and (18.71±2.00)% vs (50.44±5.61)%], meanwhile increased the rate on mDC [(71.14±1.96)% vs (64.90±1.47)%]. Chemotaxis assay showed that the migration rate of Belinostat+imDC and Belinostat+mDC group were both decreased, but the difference in imDC was not significant. T lymphocyte proliferation rate stimulated by 100 nmol/L Belinostat+imDC group was lower than imDC group in condition irritation cell∶reaction cell=1∶2 [(227.09±13.49)% vs (309.49±53.69)%]. Belinostat significantly suppressed the secretion of cytokines TNF-α, IL-12 and IL-10 (all P<0.01). The relative expression of mRNA in RelB was slightly decreased in Belinostat+imDC and Belinostat+mDC group (all P<0.05). Conclusion: Belinostat could effectly suppress DC maturation and regulate immune tolerance of DC, which may be due to the down-regulation of mRNA level of RelB in DC.
Collapse
Affiliation(s)
- W H Jia
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | | | | | | | | | | | | | - Y H Huang
- Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
7
|
Huang Y, Feng S, Xu Y, Chen W, Wang S, Li D, Li Z, Lu Q, Pan X, Xu K. Suppression of graft-versus-host disease and retention of graft-versus-tumour reaction by murine genetically engineered dendritic cells following bone marrow transplantation. Mol Med Rep 2014; 11:3820-7. [PMID: 25529231 DOI: 10.3892/mmr.2014.3123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 09/18/2014] [Indexed: 11/05/2022] Open
Abstract
The effect of infusion of lentiviral vector‑mediated, genetically engineered dendritic cells (DCs) following allogeneic bone marrow transplantation (allo‑BMT) on graft‑versus‑host disease (GVHD) and graft‑versus‑leukemia (GVL) was investigated in a mouse model. Lentivirus‑mediated expression of soluble tumor necrosis factor receptor 1 (sTNFR1) converted immature DCs (imDCs) from BABL/c mice into engineered DCs in vitro. An EL4 leukemia allo‑BMT model of BABL/c to C57BL/6 mice was established. Engineered DCs with donor bone marrow cells and splenocytes were subsequently transplanted into myeloablatively irradiated recipients. The average survival duration in the sTNFR1‑ and pXZ9‑imDC groups was significantly prolonged compared with that of the allo‑BMT group (P<0.05). Mild histological changes in GVHD or leukemia were observed in the recipients in the sTNFR1‑imDC group and clinical GVHD scores in this group were significantly decreased compared with those of the transplantation and pXZ9‑imDC groups. Serum interferon‑γ levels were decreased in the pXZ9‑imDC and sTNFR1‑imDC groups compared with those in the allo‑BMT group (P<0.05), with the reduction being more significant in the sTNFR1‑imDC group (P<0.05). Serum interleukin‑4 expression levels were decreased in the allo‑BMT group, but gradually increased in the pXZ9‑imDC and sTNFR1‑imDC groups (P<0.05). Co‑injection of donor genetically‑engineered imDCs was able to efficiently protect recipient mice from lethal GVHD while preserving GVL effects during allo‑BMT.
Collapse
Affiliation(s)
- Yihong Huang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Saran Feng
- Department of Hematology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Yujie Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Wanru Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Shuhua Wang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Depeng Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Qunxian Lu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiuying Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|