1
|
Li Z, Zhang L, Liu D, Wang C. Ceramide glycosylation and related enzymes in cancer signaling and therapy. Biomed Pharmacother 2021; 139:111565. [PMID: 33887691 DOI: 10.1016/j.biopha.2021.111565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 02/09/2023] Open
Abstract
Ceramides, the core of the sphingolipid metabolism, draw wide attention as tumor suppressor, and act directly on mitochondria to trigger apoptotic cell death. Ceramide-based therapies are being developed by using promote ceramide generating agents. The ceramide metabolism balance is regulated by multifaceted factors in cancer development. Ceramide metabolic enzymes can increase the elimination of ceramide and counteract the anti-tumor effects of ceramide. However, recent research showed that these metabolic enzymes were highly expressed in several cancers. Especially ceramide glycosyltransferases, they catalyze ceramide glycosylation and synthesis the skeleton of glycosphingolipids (GSLs), play an important role in regulating tumor progression and have a significant correlation with the poor prognosis of cancer patients. To further understand the biological characteristics of ceramide metabolism in tumor, this review focuses on the role of ceramide glycosylation and related enzymes in cancer signaling and therapy. Besides, the research on multidrug resistance and potential inhibitors of ceramide glycosyltransferases are also discussed. Advance study on the structure of ceramide glycosyltransferases and ceramide glycosylation signaling pathway will open the path to new therapies and treatments.
Collapse
Affiliation(s)
- Zibo Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lin Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Dan Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Caiyan Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Wang Y, Li Y, Shang D, Efferth T. Interactions between artemisinin derivatives and P-glycoprotein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152998. [PMID: 31301971 DOI: 10.1016/j.phymed.2019.152998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Artemisinin was isolated and identified in 1972, which was the starting point for a new era in antimalarial drug therapy. Furthermore, numerous studies have demonstrated that artemisinin and its derivatives exhibit considerable anticancer activity both in vitro, in vivo, and even in clinical Phase I/II trials. P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) is one of the most serious causes of chemotherapy failure in cancer treatment. Interestingly, many artemisinin derivatives exhibit excellent ability to overcome P-gp mediated MDR and even show collateral sensitivity against MDR cancer cells. Furthermore, some artemisinin derivatives show P-gp-mediated MDR reversal activity. Therefore, the interaction between P-gp and artemisinin derivatives is important to develop novel combination treatment protocols with artemisinin derivatives and established anticancer drugs that are P-gp substrates. PURPOSE This systematic review provides an updated overview on the interaction between artemisinin derivatives and P-gp and the effect of artemisinin derivatives on the P-gp expression level. RESULTS Artemisinin derivatives exhibit multi-specific interactions with P-gp. The currently used artemisinin derivatives are not transported by P-gp. However, some of novel synthetized artemisinin derivatives exhibit P-gp substrate properties. Furthermore, many artemisinin derivatives act as P-gp inhibitors, which exhibit the potential to reverse MDR towards clinically used anticancer drugs. CONCLUSION Therefore, studies on the interaction between artemisinin derivatives and P-gp provide important information for the development of novel anti-cancer artemisinin derivatives to reverse P-gp mediated MDR and for the design of rational artemisinin-based combination therapies against cancer.
Collapse
Affiliation(s)
- Yulin Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yongjie Li
- Department of Chinese Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian China; College of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy, Johannes Gutenberg University 55128 Mainz, Germany.
| |
Collapse
|
3
|
Huang C, Tu Y, Freter CE. Fludarabine-resistance associates with ceramide metabolism and leukemia stem cell development in chronic lymphocytic leukemia. Oncotarget 2018; 9:33124-33137. [PMID: 30237856 PMCID: PMC6145702 DOI: 10.18632/oncotarget.26043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/13/2018] [Indexed: 01/13/2023] Open
Abstract
Fludarabine (flu) -containing regimens such as flu, cyclophosphamide and rituximab have been established as one of the standard first line therapy in medically-fit chronic lymphocytic leukemia (CLL) patients. Therefore, flu-refractory (primary flu-insensitivity or flu-caused relapse) remains a major problem causing treatment failure for CLL patients. We isolated the peripheral blood mononuclear cells (PBMCs) from CLL patients and treated with flu to find flu-refractory cases, and established flu-resistant clonal cells to study molecular mechanism of flu-resistance. By comparing parental MEC-2 cells, a human CLL cell line, we found that flu-resistant clonal cells were significantly increased lethal dose 50 of flu concentration, and up-regulated expression of P-glycoprotein, a drug-resistant marker, glucosylceramide synthase (GCS), an enzyme that can convert ceramide to glucosylceramide, and CD34, a leukemia stem cell marker. Overexpression of GCS leads to promptly elimination of cellular ceramide levels and accumulation of glucosylceramide, which reduces apoptosis and promotes survival and proliferation of flu-resistant clonal cells. Furthermore, we demonstrated that the accumulation of glucosylceramide can be blocked by PDMP to restore flu-sensitivity in flu-resistant clonal cells. We also found that elevating glucosylceramide levels in flu-resistant clonal cells was associated with up-regulation of GCS and CD34 expression. Importantly, overexpression of GCS or CD34 was also determined in flu-refractory PBMCs. Our results show that flu-resistance is associated with the alteration of ceramide metabolism and the development of leukemia stem cell-like cells. The flu-resistance can be reversed by GCS inhibition as a novel strategy for overcoming drug resistance.
Collapse
Affiliation(s)
- Chunfa Huang
- Division of Hematology/Oncology, Department of Internal Medicine, School of Medicine, Saint Louis University, Saint Louis, MO, 63110, USA
| | - Yifan Tu
- Division of Hematology/Oncology, Department of Internal Medicine, School of Medicine, Saint Louis University, Saint Louis, MO, 63110, USA
| | - Carl E Freter
- Division of Hematology/Oncology, Department of Internal Medicine, School of Medicine, Saint Louis University, Saint Louis, MO, 63110, USA
| |
Collapse
|
4
|
Wang J, Dong H, Liu J, Zheng N, Xie X, Jia L. The Evaluation of Animal Models in the Development of Anticancer Agents: From Preclinical to Clinical Tests. Curr Cancer Drug Targets 2018; 19:277-284. [PMID: 30117392 DOI: 10.2174/1568009618666180817095331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/15/2018] [Accepted: 06/22/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND One of the main reasons for most of the anticancer drugs to fail in the late preclinical testing and early clinical trials is the differences in drug effects observed from animals and patients, and the challenge has been to find a balance to reduce the inherent differences from species. OBJECTIVE Predicting safe starting doses and dosing schedules for human clinical trials is the main purpose of toxicological studies of anticancer drugs. METHODS Relevant information and data were assimilated from manuscripts, congress publications, and online sources. RESULTS We systematically overview the cons and pros of animal models and briefed the ways to determine human clinical starting doses derived from animal toxicological studies for anticancer drugs. CONCLUSION This information helps smart select the suitable predictive model for anti-cancer drugs with the different mechanisms and emphasized the pharmaceutical challenges behind and ahead.
Collapse
Affiliation(s)
- Jie Wang
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350002, China
| | - Haiyan Dong
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Jian Liu
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350002, China
| | - Ning Zheng
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350002, China
| | - Xiaodong Xie
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350002, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Biopharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350002, China.,Institute of Oceanography, Minjiang University, Fuzhou, Fujian350108, China
| |
Collapse
|
5
|
Abou Daher A, El Jalkh T, Eid AA, Fornoni A, Marples B, Zeidan YH. Translational Aspects of Sphingolipid Metabolism in Renal Disorders. Int J Mol Sci 2017; 18:ijms18122528. [PMID: 29186855 PMCID: PMC5751131 DOI: 10.3390/ijms18122528] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022] Open
Abstract
Sphingolipids, long thought to be passive components of biological membranes with merely a structural role, have proved throughout the past decade to be major players in the pathogenesis of many human diseases. The study and characterization of several genetic disorders like Fabry’s and Tay Sachs, where sphingolipid metabolism is disrupted, leading to a systemic array of clinical symptoms, have indeed helped elucidate and appreciate the importance of sphingolipids and their metabolites as active signaling molecules. In addition to being involved in dynamic cellular processes like apoptosis, senescence and differentiation, sphingolipids are implicated in critical physiological functions such as immune responses and pathophysiological conditions like inflammation and insulin resistance. Interestingly, the kidneys are among the most sensitive organ systems to sphingolipid alterations, rendering these molecules and the enzymes involved in their metabolism, promising therapeutic targets for numerous nephropathic complications that stand behind podocyte injury and renal failure.
Collapse
Affiliation(s)
- Alaa Abou Daher
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Tatiana El Jalkh
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Alessia Fornoni
- Department of Medicine, Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miami, FL 33136, USA.
| | - Brian Marples
- Department of Radiation Oncology, Miller School of Medicine/Sylvester Cancer Center, University of Miami, Miami, FL 33136, USA.
| | - Youssef H Zeidan
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
- Department of Radiation Oncology, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon.
| |
Collapse
|
6
|
Ren S, Li G, Liu C, Cai T, Su Z, Wei M, She L, Tian Y, Qiu Y, Zhang X, Liu Y, Wang Y. Next generation deep sequencing identified a novel lncRNA n375709 associated with paclitaxel resistance in nasopharyngeal carcinoma. Oncol Rep 2016; 36:1861-7. [PMID: 27498905 PMCID: PMC5024742 DOI: 10.3892/or.2016.4981] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/30/2016] [Indexed: 12/14/2022] Open
Abstract
Paclitaxel chemoresistance restricts the therapeutic efficacy and prognosis of patients with nasopharyngeal carcinoma (NPC). Accumulating evidence suggests that aberrant expression of long non-coding RNAs (lncRNAs) contributes to cancer progression. Therefore, we aimed to identify lncRNAs associated with paclitaxel resistance in NPC. First, paclitaxel-resistant CNE-2 cells (CNE-2-Pr) were successfully established and confirmed to be 33.26±8.70 times more resistant than parental CNE-2 cells. Then, differential expression profile of lncRNAs associated with NPC paclitaxel resistance, which contained a total of 2,670 known lncRNAs and 4,820 novel lncRNAs, was constructed via next generation sequencing technology. Our qRT-PCR confirmed that 7 of the top 8 lncRNAs were expressed with the same trend as the prediction, including 4 known lncRNAs (n375709, n377806, n369241 and n335785) and 3 novel lncRNAs (Unigene6646, Unigene6644 and Unigene1654). Our group initially focused on lncRNA n375709, which was the most significantly overexpressed lncRNA of the known lncRNAs. CCK-8 assays demonstrated that further inhibition of lncRNA n375709 increased the paclitaxel sensitivity in NPC 5-8F and 6-10B cells. In conclusion, the present study provided an overview of the expression profiles of lncRNAs correlated with paclitaxel resistance. lncRNA n375709 was identified to be involved in the regulation of NPC paclitaxel resistance.
Collapse
Affiliation(s)
- Shuling Ren
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Tao Cai
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zongwu Su
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ming Wei
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Li She
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yongquan Tian
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yunyun Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
7
|
Kitatani K, Taniguchi M, Okazaki T. Role of Sphingolipids and Metabolizing Enzymes in Hematological Malignancies. Mol Cells 2015; 38:482-95. [PMID: 25997737 PMCID: PMC4469906 DOI: 10.14348/molcells.2015.0118] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/07/2015] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids such as ceramide, sphingosine-1-phosphate and sphingomyelin have been emerging as bioactive lipids since ceramide was reported to play a role in human leukemia HL-60 cell differentiation and death. Recently, it is well-known that ceramide acts as an inducer of cell death, that sphingomyelin works as a regulator for microdomain function of the cell membrane, and that sphingosine-1-phosphate plays a role in cell survival/proliferation. The lipids are metabolized by the specific enzymes, and each metabolite could be again returned to the original form by the reverse action of the different enzyme or after a long journey of many metabolizing/synthesizing pathways. In addition, the metabolites may serve as reciprocal bio-modulators like the rheostat between ceramide and sphingosine-1-phosphate. Therefore, the change of lipid amount in the cells, the subcellular localization and the downstream signal in a specific subcellular organelle should be clarified to understand the pathobiological significance of sphingolipids when extracellular stimulation induces a diverse of cell functions such as cell death, proliferation and migration. In this review, we focus on how sphingolipids and their metabolizing enzymes cooperatively exert their function in proliferation, migration, autophagy and death of hematopoetic cells, and discuss the way developing a novel therapeutic device through the regulation of sphingolipids for effectively inhibiting cell proliferation and inducing cell death in hematological malignancies such as leukemia, malignant lymphoma and multiple myeloma.
Collapse
Affiliation(s)
- Kazuyuki Kitatani
- Tohoku Medical Megabank Organization, Sendai,
Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai,
Japan
| | - Makoto Taniguchi
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293,
Japan
| | - Toshiro Okazaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa 920-0293,
Japan
- Department of Medicine, Division of Hematology/Immunology, Kanazawa Medical University, Uchinada, Ishikawa 920-0293,
Japan
| |
Collapse
|
8
|
Progress in RNAi-mediated Molecular Therapy of Acute and Chronic Myeloid Leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e240. [DOI: 10.1038/mtna.2015.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/26/2015] [Indexed: 02/08/2023]
|
9
|
Wang Q, Zou J, Zhang X, Mu H, Yin Y, Xie P. Glucosylceramide synthase promotes Bcl-2 expression via the ERK signaling pathway in the K562/A02 leukemia drug-resistant cell line. Int J Hematol 2014; 100:559-66. [PMID: 25281403 DOI: 10.1007/s12185-014-1679-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/19/2014] [Accepted: 09/21/2014] [Indexed: 01/31/2023]
Abstract
Multidrug resistance (MDR) to chemotherapeutic agents is a major obstacle to curative treatment of cancer. In various types of cancers, overexpression of glucosylceramide synthase (GCS) has been observed to be associated with MDR, thus making GCS a target for reversal of resistance. Our previous work demonstrated that GCS and Bcl-2 are co-overexpressed in the K562/A02 leukemia multidrug-resistant cell line compared with its sensitive counterpart, K562. In the present study, we investigated the effects of GCS on apoptosis in K562/A02 and the associated molecular mechanisms. Our results indicate that the inhibition of GCS caused downregulation of Bcl-2 as well as apoptosis enhancement in response to ADM via the ERK pathway, while JNK or p38 MAPK signaling appeared to play less significant roles in the regulation of apoptosis and MDR in K562/A02 cells. Targeting GCS by siRNA also enhanced ceramide accumulation, which is involved in GCS knockdown-induced inhibition of ERK activation and Bcl-2 expression levels.
Collapse
Affiliation(s)
- Qian Wang
- Central Laboratory, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
10
|
Liu YY, Hill RA, Li YT. Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance. Adv Cancer Res 2013; 117:59-89. [PMID: 23290777 DOI: 10.1016/b978-0-12-394274-6.00003-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glucosylceramide synthase (GCS), converting ceramide to glucosylceramide, catalyzes the first reaction of ceramide glycosylation in sphingolipid metabolism. This glycosylation by GCS is a critical step regulating the modulation of cellular activities by controlling ceramide and glycosphingolipids (GSLs). An increase of ceramide in response to stresses, such as chemotherapy, drives cells to proliferation arrest and apoptosis or autophagy; however, ceramide glycosylation promptly eliminates ceramide and consequently, these induced processes, thus protecting cancer cells. Further, persistently enhanced ceramide glycosylation can increase GSLs, participating in selecting cancer cells to drug resistance. GCS is overexpressed in diverse drug-resistant cancer cells and in tumors of breast, colon, and leukemia that display poor response to chemotherapy. As ceramide glycosylation by GCS is a rate-limiting step in GSL synthesis, inhibition of GCS sensitizes cancer cells to anticancer drugs and eradicates cancer stem cells. Mechanistic studies indicate that uncoupling ceramide glycosylation can modulate gene expression, decreasing MDR1 through the cSrc/β-catenin pathway and restoring p53 expression via RNA splicing. These studies not only expand our knowledge in understanding how ceramide glycosylation affects cancer cells but also provide novel therapeutic approaches for targeting refractory tumors.
Collapse
Affiliation(s)
- Yong-Yu Liu
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA, USA.
| | | | | |
Collapse
|
11
|
Xia CQ, Smith PG. Drug Efflux Transporters and Multidrug Resistance in Acute Leukemia: Therapeutic Impact and Novel Approaches to Mediation. Mol Pharmacol 2012; 82:1008-21. [DOI: 10.1124/mol.112.079129] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|