1
|
Pasieka R, Zasoński G, Raczyńska KD. Role of Long Intergenic Noncoding RNAs in Cancers with an Overview of MicroRNA Binding. Mol Diagn Ther 2023; 27:29-47. [PMID: 36287372 PMCID: PMC9813052 DOI: 10.1007/s40291-022-00619-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 02/04/2023]
Abstract
Long intergenic noncoding RNAs are transcripts originating from the regions without annotated coding genes. They are located mainly in the nucleus and regulate gene expression. Long intergenic noncoding RNAs can be also found in the cytoplasm acting as molecular sponges of certain microRNAs. This is crucial in various biological and signaling pathways. Expression levels of many long intergenic noncoding RNAs are disease related. In this article, we focus on the long intergenic noncoding RNAs and their relation to different types of cancer. Studies showed that abnormal expression of long intergenic noncoding RNA deregulates signaling pathways due to the disrupted free microRNA pool. Hampered signaling pathways leads to abnormal cell proliferation and restricts cell death, thus resulting in oncogenesis. This review highlights promising therapeutic targets and enables the identification of potential biomarkers specific for a certain type of cancer. Moreover, we provide an outline of long intergenic noncoding RNAs/microRNA axes, which might be applied in further detailed experiments broadening our knowledge about the cellular role of those RNA species.
Collapse
Affiliation(s)
- Robert Pasieka
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology and Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Gilbert Zasoński
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Katarzyna Dorota Raczyńska
- Laboratory of RNA Processing, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology and Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland.
| |
Collapse
|
2
|
Inhibition of the MAP2K7-JNK pathway with 5Z-7-oxozeaenol induces apoptosis in T-cell acute lymphoblastic leukemia. Oncotarget 2021; 12:1787-1801. [PMID: 34504651 PMCID: PMC8416565 DOI: 10.18632/oncotarget.28040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive pediatric leukemia with a worse prognosis than most frequent B-cell ALL due to a high incidence of treatment failures and relapse. Our previous work showed that loss of the pioneer factor KLF4 in a NOTCH1-induced T-ALL mouse model accelerated the development of leukemia through expansion of leukemia-initiating cells and activation of the MAP2K7 pathway. Similarly, epigenetic silencing of the KLF4 gene in children with T-ALL was associated with MAP2K7 activation. Here, we showed the small molecule 5Z-7-oxozeaenol (5Z7O) induces dose-dependent cytotoxicity in a panel of T-ALL cell lines mainly through inhibition of the MAP2K7-JNK pathway, which further validates MAP2K7 as a therapeutic target. Mechanistically, 5Z7O-mediated apoptosis was caused by the downregulation of regulators of the G2/M checkpoint and the inhibition of survival pathways. The anti-leukemic capacity of 5Z7O was evaluated using leukemic cells from two mouse models of T-ALL and patient-derived xenograft cells generated using lymphoblasts from pediatric T-ALL patients. Finally, a combination of 5Z7O with dexamethasone, a drug used in frontline therapy, showed synergistic induction of cytotoxicity. In sum, we report here that MAP2K7 inhibition thwarts survival mechanisms in T-ALL cells and warrants future pre-clinical studies for high-risk and relapsed patients.
Collapse
|
3
|
Dong Y, Guo H, Wang D, Tu R, Qing G, Liu H. Genome-Wide Analysis Identifies Rag1 and Rag2 as Novel Notch1 Transcriptional Targets in Thymocytes. Front Cell Dev Biol 2021; 9:703338. [PMID: 34322489 PMCID: PMC8311795 DOI: 10.3389/fcell.2021.703338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 12/04/2022] Open
Abstract
Recombination activating genes 1 (Rag1) and Rag2 are expressed in immature lymphocytes and essential for generating the vast repertoire of antigen receptors. Yet, the mechanisms governing the transcription of Rag1 and Rag2 remain to be fully determined, particularly in thymocytes. Combining cDNA microarray and ChIP-seq analysis, we identify Rag1 and Rag2 as novel Notch1 transcriptional targets in acute T-cell lymphoblastic leukemia (T-ALL) cells. We further demonstrate that Notch1 transcriptional complexes directly bind the Rag1 and Rag2 locus in not only T-ALL but also primary double negative (DN) T-cell progenitors. Specifically, dimeric Notch1 transcriptional complexes activate Rag1 and Rag2 through a novel cis-element bearing a sequence-paired site (SPS). In T-ALL and DN cells, dimerization-defective Notch1 causes compromised Rag1 and Rag2 expression; conversely, dimerization-competent Notch1 achieves optimal upregulation of both. Collectively, these results reveal Notch1 dimerization-mediated transcription as one of the mechanisms for activating Rag1 and Rag2 expression in both primary and transformed thymocytes. Our data suggest a new role of Notch1 dimerization in compelling efficient TCRβ rearrangements in DN progenitors during T-cell development.
Collapse
Affiliation(s)
- Yang Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Hao Guo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Donghai Wang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rongfu Tu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Guoliang Qing
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Hudan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Zheng R, Li M, Wang S, Liu Y. Advances of target therapy on NOTCH1 signaling pathway in T-cell acute lymphoblastic leukemia. Exp Hematol Oncol 2020; 9:31. [PMID: 33292596 PMCID: PMC7664086 DOI: 10.1186/s40164-020-00187-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is one of the hematological malignancies. With the applications of chemotherapy regimens and allogeneic hematopoietic stem cell transplantation, the cure rate of T-ALL has been significantly improved. However, patients with relapsed and refractory T-ALL still lack effective treatment options. Gene mutations play an important role in T-ALL. The NOTCH1 gene mutation is the important one among these genetic mutations. Since the mutation of NOTCH1 gene is considered as a driving oncogene in T-ALL, targeting the NOTCH1 signaling patheway may be an effective option to overcome relapsed and refractory T-ALL. This review mainly summarizes the recent research advances of targeting on NOTCH1 signaling pathway in T-ALL.
Collapse
Affiliation(s)
- Ruyue Zheng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Menglin Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shujuan Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yanfang Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
LncRNA-NEAT1 promotes proliferation of T-ALL cells via miR-146b-5p/NOTCH1 signaling pathway. Pathol Res Pract 2020; 216:153212. [PMID: 33010698 DOI: 10.1016/j.prp.2020.153212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) is a malignant tumor of the hematopoietic system, which can develop at any age, with the symptoms of weakness, fatigue, enlarged lymph nodes, or weight loss. Nuclear paraspeckle assembly transcript 1 (NEAT1) is involved in the process of T-ALL, but the regulatory mechanism is still not known clearly. METHODS The expression levels of NEAT1 and miR-146b-5p in T-ALL cells were performed by qRT-PCR and NOTCH1 protein level- wwWwas determined by western blot assay. Dual-luciferase reporter assay was used to detect the interaction between NEAT1 and miR-146b-5p, as well as miR-146b-5p and NOTCH1. The cell proliferation was measured by using MTT assay and colony formation assay. RESULTS The expression levels of NEAT1 were markedly increased, but miR-146b-5p levels were reduced in T-ALL cells. Knockdown of NEAT1 or overexpression of miR-146b-5p decreased NOTCH1 expression, inhibited the proliferation of T-ALL cells. MiR-146b-5p bound both NEAT1 and NOTCH1 3'-UTR directly. Finally, inhibition of miR-146b-5p could abrogate the effects of NEAT1 knockdown on the proliferation of T-ALL cells. CONCLUSION NEAT1 promotes the proliferation of T-ALL cells by sponging miR-146b-5p to upregulate the expression of NOTCH1. The results of this study provide new insight into the action mechanism of NEAT1 modulating T-ALL progression.
Collapse
|
6
|
Gao C, Peng YN, Wang HZ, Fang SL, Zhang M, Zhao Q, Liu J. Inhibition of Heat Shock Protein 90 as a Novel Platform for the Treatment of Cancer. Curr Pharm Des 2020; 25:849-855. [PMID: 31244417 DOI: 10.2174/1381612825666190503145944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Heat shock protein 90 (Hsp90) plays an essential role in various physiological and pathological processes. It activates client proteins to participate in tumor progression. Blocking Hsp90 could enable effective antitumor effects in many tumor types, such as multiple myeloma and colon cancer. Recently, it has motivated an interest in Hsp90 inhibitors that bind to the N-terminal or C-terminal ATP pocket as antitumor drugs. We reviewed the data from experimental and clinical trials on Hsp90 inhibitors in the treatment of different malignancies to explore and summarize their antitumor mechanisms.
Collapse
Affiliation(s)
- Chang Gao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ya-Nan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Hai-Zhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Shi-Lin Fang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
7
|
Su H, Hu J, Huang L, Yang Y, Thenoz M, Kuchmiy A, Hu Y, Li P, Feng H, Zhou Y, Taghon T, Van Vlierberghe P, Qing G, Chen Z, Liu H. SHQ1 regulation of RNA splicing is required for T-lymphoblastic leukemia cell survival. Nat Commun 2018; 9:4281. [PMID: 30323192 PMCID: PMC6189109 DOI: 10.1038/s41467-018-06523-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
T-acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with complicated heterogeneity. Although expression profiling reveals common elevated genes in distinct T-ALL subtypes, little is known about their functional role(s) and regulatory mechanism(s). We here show that SHQ1, an H/ACA snoRNP assembly factor involved in snRNA pseudouridylation, is highly expressed in T-ALL. Mechanistically, oncogenic NOTCH1 directly binds to the SHQ1 promoter and activates its transcription. SHQ1 depletion induces T-ALL cell death in vitro and prolongs animal survival in murine T-ALL models. RNA-Seq reveals that SHQ1 depletion impairs widespread RNA splicing, and MYC is one of the most prominently downregulated genes due to inefficient splicing. MYC overexpression significantly rescues T-ALL cell death resulted from SHQ1 inactivation. We herein report a mechanism of NOTCH1–SHQ1–MYC axis in T-cell leukemogenesis. These findings not only shed light on the role of SHQ1 in RNA splicing and tumorigenesis, but also provide additional insight into MYC regulation. T-acute lymphoblastic leukemia is an aggressive cancer. Here the authors provide insights into the functional role of SHQ1, an H/ACA snoRNP assembly factor involved in snRNA pseudouridylation, in T-lymphoblastic leukemia cell survival through regulating the maturation of MYC mRNA.
Collapse
Affiliation(s)
- Hexiu Su
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Juncheng Hu
- Medical Research Institute, Wuhan University, Wuhan, 430071, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Yang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Morgan Thenoz
- Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Anna Kuchmiy
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, 9000, Belgium
| | - Yufeng Hu
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Peng Li
- South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Hui Feng
- Department of Pharmacology and Department of Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yu Zhou
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Tom Taghon
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, 9000, Belgium
| | | | - Guoliang Qing
- Medical Research Institute, Wuhan University, Wuhan, 430071, China.,Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhichao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hudan Liu
- Medical Research Institute, Wuhan University, Wuhan, 430071, China. .,Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
8
|
Liu Z, Smith KR, Khong HT, Huang J, Ahn EYE, Zhou M, Tan M. miR-125b regulates differentiation and metabolic reprogramming of T cell acute lymphoblastic leukemia by directly targeting A20. Oncotarget 2018; 7:78667-78679. [PMID: 27637078 PMCID: PMC5346668 DOI: 10.18632/oncotarget.12018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic malignancy. Although it has been reported that overexpression of miR-125b leads to T-ALL development, the underlying mechanisms of miR-125b action are still unclear. The goal of this study is to delineate the role of miR-125b in T-ALL development. We found that miR-125b is highly expressed in undifferentiated leukemic T cells (CD4-negative) while its expression is low in differentiated T cells (CD4-positive). Overexpression of miR-125b increased the CD4-negative population in T cells, whereas depletion of miR-125b by miR-125b-sponge decreased the CD4-negative cell population. We identified that A20 (TNFAIP3) is a direct target of miR-125b in T cells. Overexpression of miR-125b also increased glucose uptake and oxygen consumption in T cells through targeting A20. Furthermore, restoration of A20 in miR-125b-overexpressing cells decreased the CD4-negative population in T cell leukemia, and decreased glucose uptake and oxygen consumption to the basal level of T cells transfected with vector. In conclusion, our data demonstrate that miR-125b regulates differentiation and reprogramming of T cell glucose metabolism via targeting A20. Since both de-differentiation and dysregulated glucose metabolism contribute to the development of T-cell leukemia, these findings provide novel insights into the understanding and treatment of T-ALL.
Collapse
Affiliation(s)
- Zixing Liu
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Kelly R Smith
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Hung T Khong
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Jingshan Huang
- School of Computing, University of South Alabama, Mobile, AL, USA
| | | | - Ming Zhou
- Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry & Molecular Biology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
9
|
Gao M, Chen G, Wang H, Xie B, Hu L, Kong Y, Yang G, Tao Y, Han Y, Wu X, Zhang Y, Dai B, Shi J. Therapeutic potential and functional interaction of carfilzomib and vorinostat in T-cell leukemia/lymphoma. Oncotarget 2018; 7:29102-15. [PMID: 27074555 PMCID: PMC5045381 DOI: 10.18632/oncotarget.8667] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
We previously showed that the proteasome inhibitor carfilzomib and the histone deacetylase inhibitor (HDACI) vorinostat cooperated to induce cell apoptosis in one T-cell leukemia cell line in vitro, implying the possibility of the combination treatment of carfilzomib and vorinostat as a potential therapeutic strategy in human T-cell leukemia/lymphoma. Here we report that combination treatment of carfilzomib and vorinostat enhanced cell apoptosis and induced a marked increase in G2-M arrest, reactive oxygen species (ROS) generation, and activated the members of mitogen-activated protein kinases (MAPK) family, including the stress-activated kinases JNK, p38MAPK, and ERK1/2. Carfilzomib/vorinostat-mediated apoptosis was blocked by the ROS scavenger N-acetylcysteine (NAC). The JNK inhibitor SP600125 and the p38MAPK inhibitor SB203580 but not the MEK1/2 inhibitor U0126 significantly attenuated carfilzomib/vorinostat-induced apoptosis, suggesting that p38MAPK and JNK activation contribute to carfilzomib and vorinostat-induced apoptosis. This was further confirmed via short hairpin (shRNA) RNA knockdown of p38MAPK and JNK. Interestingly, the ROS scavenger NAC attenuated carfilzomib/vorinostat-mediated activation of p38MAPK and JNK. However, p38MAPK shRNA but not JNK shRNA diminished carfilzomib/vorinostat-mediated ROS generation. In contrast, overexpression of p38MAPK significantly increased carfilzomib/vorinostat-mediated ROS generation, suggesting that an amplification loop exists between ROS and p38MAPK pathway. Combination treatment of carfilzomib and vorinostat enhanced their individual antitumor activity in both a human xenograft model as well as human primary T-cell leukemia/lymphoma cells. These data suggest the potential clinical benefit and underlying molecular mechanism of combining carfilzomib with vorinostat in the treatment of human T-cell leukemia/lymphoma.
Collapse
Affiliation(s)
- Minjie Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gege Chen
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Houcai Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingqian Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanyuan Kong
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Han
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiwen Zhang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bojie Dai
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,College of Life Science and Technology, Tongji University, Shanghai, China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Study of NOTCH1 and FBXW7 Mutations and Its Prognostic Significance in South Indian T-Cell Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2018; 40:e1-e8. [PMID: 29200162 DOI: 10.1097/mph.0000000000001006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
NOTCH1/FBXW7 mutations trigger oncogenic NOTCH1 signaling and its downstream target genes play crucial roles in the molecular pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL). In the present study, NOTCH1 and FBXW7 mutations were studied in 25 primary T-ALL samples. All 34 exons of NOTCH1 and hotspot exons (exon 9 and exon 10) of FBXW7 were polymerase chain reaction amplified and sequenced for mutations. Our results showed that 13/25 (52%) were NOTCH1-mutated, of which 11 patients (44%) showed mutation in the hotspot exons. Four patients (16%) had mutations in non-hotspot exons of NOTCH1. Notably, 2 T-ALL patients (8%) harbored mutations in both hotspot and non-hotspot exons of NOTCH1, whereas 2 patients (8%) had mutations in the hotspot exons of FBXW7. In all, 7 mutations were identified which were not previously reported. The real-time polymerase chain reaction study in 15 patients revealed that increased expression of activated NOTCH1 was found in NOTCH1/FBXW7 hotspot exon-mutated cases. In addition, NOTCH1/FBXW7-mutated patients had showed upregulated HES1, c-MYC, NOTCH3 gene expression. When survival analysis was performed including samples (n=50) from our previous study, an early treatment response and better survival was observed in NOTCH1/FBXW7 hotspot-mutated patients. Our study suggests that NOTCH1/FBXW7 hotspot-mutated T-ALL cases had better response to ALL BFM-95 protocol.
Collapse
|
11
|
Novel tumor-suppressor function of KLF4 in pediatric T-cell acute lymphoblastic leukemia. Exp Hematol 2017; 53:16-25. [PMID: 28479419 DOI: 10.1016/j.exphem.2017.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 02/07/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy in pediatric patients. Despite advances in the treatment of this disease, many children with T-cell ALL (T-ALL) die from disease relapse due to low responses to standard chemotherapy and the lack of a targeted therapy that selectively eradicates the chemoresistant leukemia-initiating cells (LICs) responsible for disease recurrence. We reported recently that the reprogramming factor Krüppel-like factor 4 (KLF4) has a tumor-suppressive function in children with T-ALL. KLF4 silencing by promoter deoxyribonucleic acid (DNA) methylation in patients with T-ALL leads to aberrant activation of the mitogen-activated protein kinase kinase MAP2K7 and the downstream c-Jun NH2-terminal kinase (JNK) pathway that controls the expansion of leukemia cells via c-Jun and activating transcription factor 2. This pathway can be inhibited with small molecules and therefore has the potential to eliminate LICs and eradicate disease in combination with standard therapy for patients with refractory and relapsed disease. The present review summarizes the role of the KLF4-MAP2K7 pathway in T-ALL pathogenesis and the function of JNK and MAP2K7 in carcinogenesis and therapy.
Collapse
|
12
|
Wang Z, Hu Y, Xiao D, Wang J, Liu C, Xu Y, Shi X, Jiang P, Huang L, Li P, Liu H, Qing G. Stabilization of Notch1 by the Hsp90 Chaperone is Crucial for T-Cell Leukemogenesis. Clin Cancer Res 2017; 23:3834-3846. [PMID: 28143869 DOI: 10.1158/1078-0432.ccr-16-2880] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/06/2017] [Accepted: 01/22/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Zhaojing Wang
- Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Medical Research Institute, Wuhan University, Wuhan, PR China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yufeng Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Daibiao Xiao
- Medical Research Institute, Wuhan University, Wuhan, PR China.
| | - Jingchao Wang
- Medical Research Institute, Wuhan University, Wuhan, PR China.
| | - Chuntao Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yisheng Xu
- Protein Facility, Center of Biomedical Analysis, Tsinghua University, Beijing, PR China
| | - Xiaomeng Shi
- Protein Facility, Center of Biomedical Analysis, Tsinghua University, Beijing, PR China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Beijing, PR China
| | - Liang Huang
- Department of Hematology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Peng Li
- South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Hudan Liu
- Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Medical Research Institute, Wuhan University, Wuhan, PR China.
| | - Guoliang Qing
- Zhongnan Hospital of Wuhan University, Wuhan, PR China
- Medical Research Institute, Wuhan University, Wuhan, PR China.
| |
Collapse
|
13
|
Pei H, Du J, Song X, He L, Zhang Y, Li X, Qiu C, Zhang Y, Hou J, Feng J, Gao E, Li D, Yang Y. Melatonin prevents adverse myocardial infarction remodeling via Notch1/Mfn2 pathway. Free Radic Biol Med 2016; 97:408-417. [PMID: 27387769 DOI: 10.1016/j.freeradbiomed.2016.06.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/04/2016] [Accepted: 06/16/2016] [Indexed: 01/17/2023]
Abstract
Mitochondrial dysfunction is linked with myocardial infarction (MI), a disorder in which Notch1 has attracted increasing attention. However, the involvement of Notch1 in mitochondrial impairment after an MI is poorly understood, as is the role of mitochondrial fusion-associated protein 2 (Mfn2). Moreover, whether melatonin potentiates the Notch1/Mfn2 pathway in post-MI cardiac damage remains unclear. In our study, small interfering RNAs against Notch1 or Mfn2 and Jagged1 peptide were delivered via intramyocardial injection. At 3 days after these treatments, MI was induced by ligation of the anterior descending branch. We found that this ablation of Notch1 or Mfn2 aggravated post-MI injury, including worsened mitochondrial damage and increased generation of reactive oxygen species (ROS). In contrast, Jagged1 improved mitochondrial structure and function, decreased ROS production and attenuated post-MI injury. Interestingly, though Mfn2 expression was mildly regulated by Notch1 signaling in myocardium, Mfn2 deficiency nearly eliminated the cardioprotection by Jagged1, as evidenced by suppressed cardiac function, aggravated myocardial fibrosis, increased cell apoptosis, worsened mitochondrial impairment and enhanced oxidative stress. These observations revealed that Mfn2 plays an indispensable role in protection against MI-induced injury by Notch1. The mechanism might involve disrupting a damaging cycle of mitochondrial damage and ROS generation. Furthermore, melatonin activated Notch1 signaling and increased Mfn2 expression were reversed by luzindole, a nonselective antagonist of the melatonin receptor. Notably, melatonin attenuated post-MI injury in normal mice, but not in mice deficient in Notch1 or Mfn2. These results demonstrate that melatonin attenuates post-MI injury via the Notch1/Mfn2 pathway in a receptor-dependent manner.
Collapse
Affiliation(s)
- Haifeng Pei
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China; Third Military Medical University, Chongqing 400042, China
| | - Jin Du
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Xiaofeng Song
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Lei He
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Yufei Zhang
- Department of Medical Genetics and Developmental Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiuchuan Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Chenming Qiu
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Yangyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juanni Hou
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Juan Feng
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Erhe Gao
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China
| | - Yongjian Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu 610083, China; Third Military Medical University, Chongqing 400042, China.
| |
Collapse
|
14
|
Benyoucef A, Palii CG, Wang C, Porter CJ, Chu A, Dai F, Tremblay V, Rakopoulos P, Singh K, Huang S, Pflumio F, Hébert J, Couture JF, Perkins TJ, Ge K, Dilworth FJ, Brand M. UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia. Genes Dev 2016; 30:508-21. [PMID: 26944678 PMCID: PMC4782046 DOI: 10.1101/gad.276790.115] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Benyoucef et al. reveal the existence of a subtype-specific epigenetic vulnerability in T-cell acute lymphoblastic leukemia (T-ALL) by which a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL1 is uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase UTX/KDM6A. T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous group of hematological tumors composed of distinct subtypes that vary in their genetic abnormalities, gene expression signatures, and prognoses. However, it remains unclear whether T-ALL subtypes differ at the functional level, and, as such, T-ALL treatments are uniformly applied across subtypes, leading to variable responses between patients. Here we reveal the existence of a subtype-specific epigenetic vulnerability in T-ALL by which a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL1 is uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase UTX/KDM6A. Specifically, we identify UTX as a coactivator of TAL1 and show that it acts as a major regulator of the TAL1 leukemic gene expression program. Furthermore, we demonstrate that UTX, previously described as a tumor suppressor in T-ALL, is in fact a pro-oncogenic cofactor essential for leukemia maintenance in TAL1-positive (but not TAL1-negative) T-ALL. Exploiting this subtype-specific epigenetic vulnerability, we propose a novel therapeutic approach based on UTX inhibition through in vivo administration of an H3K27 demethylase inhibitor that efficiently kills TAL1-positive primary human leukemia. These findings provide the first opportunity to develop personalized epigenetic therapy for T-ALL patients.
Collapse
Affiliation(s)
- Aissa Benyoucef
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada; Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada
| | - Carmen G Palii
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada
| | - Chaochen Wang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Christopher J Porter
- Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Alphonse Chu
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Fengtao Dai
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Véronique Tremblay
- Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Patricia Rakopoulos
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Kulwant Singh
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - Francoise Pflumio
- Commissariat á l'Energie Atomique et aux Energies Alternatives, Direction des Sciences du Vivant (DSV)-Institut de Recherche en Radiobiologie Cellulaire et Moléculaire (IRCM)-Stem Cells and Radiation Department (SCSR)-Laboratory of Hematopoietic Stem Cells and Leukemia (LSHL), U967, Fontenay-aux-Roses 92265, Paris, France; Institut National de la Santé et de la Recherche Médicale, U967, Fontenay-aux-Roses 92265, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, UMR 967, Fontenay-aux-Roses 92265, Paris, France
| | - Josée Hébert
- Institute of Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada; Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Jean-Francois Couture
- Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Theodore J Perkins
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Ottawa Bioinformatics Core Facility, The Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - F Jeffrey Dilworth
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada; Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada
| | - Marjorie Brand
- The Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8L6, Canada; Ottawa Institute for Systems Biology, Ottawa, Ontario K1H 8L6, Canada
| |
Collapse
|
15
|
Bosselut R. Pleiotropic Functions of H3K27Me3 Demethylases in Immune Cell Differentiation. Trends Immunol 2016; 37:102-113. [PMID: 26796037 DOI: 10.1016/j.it.2015.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/12/2015] [Accepted: 12/13/2015] [Indexed: 02/06/2023]
Abstract
The trimethylation of histone H3 lysine 27 (H3K27Me3) contributes to gene repression, notably through recruitment of Polycomb complexes, and has long been considered essential to maintain cell identity. Whereas H3K27Me3 was thought to be stable and not catalytically reversible, the discovery of the Utx and Jmjd3 demethylases changed this notion, raising new questions on the role of these enzymes in gene expression and cell differentiation. Recent studies have demonstrated critical roles for Utx and Jmjd3 in the development and function of immune cells, and revealed both demethylase and demethylase-independent activities of these enzymes. I review these finding here, and discuss the current understanding of the mechanisms that underlie the broad, yet highly cell- and gene-specific, impact of these enzymes in vivo.
Collapse
Affiliation(s)
- Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
NOTCH1 and FBXW7 mutations favor better outcome in pediatric South Indian T-cell acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2015; 37:e23-30. [PMID: 25493453 DOI: 10.1097/mph.0000000000000290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The NOTCH1 signaling pathway is essential for hematopoiesis and a critical regulatory step for T-cell proliferation and maturation. The E3 ubiquitin ligase FBXW7 controls NOTCH1 protein stability. Mutations in NOTCH1/FBXW7 activate NOTCH signaling and are of prognostic significance in patients with T-cell acute lymphoblastic leukemia (T-ALL). In this study we analyzed NOTCH1 and FBXW7 mutations in 50 South Indian T-ALL patients treated by a modified ALL BFM 95 regimen. The hot spot exons (HD-N, HD-C, TAD, and PEST) of NOTCH1 and exons 9 of the 10 of FBXW7 were polymerase chain reaction amplified and sequenced. In total, 20 of the 50 (40%) T-ALL patients revealed heterozygous mutations in the NOTCH1 domains, and a predominance of missense mutations in HD-N (70%) and PEST (15%) domains. FBXW7 mutations were detected in 5 of the 50 (10%) T-ALL patients. T-ALL patients with NOTCH1/FBXW7 mutations expressed higher protein level of NOTCH1 compared with patients without NOTCH1/FBXW7 mutations. Six of the mutations detected in NOTCH1 were not reported previously. When tested in a Dual Luciferase Renilla reporter assay some of these conferred increased NOTCH activity, suggesting that these are activating mutations. Importantly, 13 of the 20 (65%) NOTCH1/FBXW7-mutated T-ALL patients showed a good prednisone response (P=0.01) and a better clinical outcome compared with NOTCH1/FBXW7 nonmutated patients (P=0.03). These data suggest that NOTCH1/FBXW7 mutations are present in T-ALL patients from Southern India and may be useful biomarkers to predict prognosis in T-ALL.
Collapse
|
17
|
Advances in siRNA delivery to T-cells: potential clinical applications for inflammatory disease, cancer and infection. Biochem J 2013; 455:133-47. [DOI: 10.1042/bj20130950] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The specificity of RNAi and its ability to silence ‘undruggable’ targets has made inhibition of gene expression in T-cells with siRNAs an attractive potential therapeutic strategy for the treatment of inflammatory disease, cancer and infection. However, delivery of siRNAs into primary T-cells represents a major hurdle to their use as potential therapeutic agents. Recent advances in siRNA delivery through the use of electroporation/nucleofection, viral vectors, peptides/proteins, nanoparticles, aptamers and other agents have now enabled efficient gene silencing in primary T-cells both in vitro and in vivo. Overcoming such barriers in siRNA delivery offers exciting new prospects for directly targeting T-cells systemically with siRNAs, or adoptively transferring T-cells back into patients following ex vivo manipulation with siRNAs. In the present review, we outline the challenges in delivering siRNAs into primary T-cells and discuss the mechanism and therapeutic opportunities of each delivery method. We emphasize studies that have exploited RNAi-mediated gene silencing in T-cells for the treatment of inflammatory disease, cancer and infection using mouse models. We also discuss the potential therapeutic benefits of manipulating T-cells using siRNAs for the treatment of human diseases.
Collapse
|
18
|
Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence. Blood 2013; 121:3153-60. [PMID: 23396305 DOI: 10.1182/blood-2012-12-474148] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Probability of event-free survival (pEFS) in pediatric T-cell lymphoblastic lymphoma is about 80%, whereas survival in relapsed patients is very poor. No stratification criteria have been established so far. Recently, activating NOTCH1 mutations were reported to be associated with favorable prognosis, and loss of heterozygosity at chromosome 6q (LOH6q) was reported to be associated with increased relapse risk. The current project was intended to evaluate the prognostic effect of these markers. Mutations in hot spots of NOTCH1 and FBXW7 were analyzed in 116 patients. Concerning LOH6q status, 118 patients were investigated, using microsatellite marker analysis, in addition to an earlier reported cohort of 99 available patients. Ninety-two cases were evaluable for both analyses. All patients were treated with T-cell lymphoblastic lymphoma-Berlin-Frankfurt-Münster group (BFM)-type treatment. LOH6q was observed in 12% of patients (25/217) and associated with unfavorable prognosis (pEFS 27% ± 9% vs 86% ± 3%; P < .0001). In 60% (70/116) of the patients, NOTCH1 mutations were detected and associated with favorable prognosis (pEFS 84% ± 5% vs 66% ± 7%; P = .021). Interestingly, NOTCH1 mutations were rarely observed in patients with LOH in 6q16. Both prognostic markers will be used as stratification criteria in coming Non-Hodgkin Lymphoma-BFM trials.
Collapse
|
19
|
Abstract
Oncogenic activating mutations in NOTCH1 occur in more than 50% of T-cell acute lymphoblastic leukemias (T-ALLs). In the present study, we describe a novel mechanism of NOTCH1 activation in T-ALL in which a deletion removing the 5' portion of NOTCH1 abolishes the negative regulatory control of the extracellular domain and leads to constitutively active NOTCH1 signaling. Polypeptides translated from truncated transcripts encoded by the NOTCH1 deletion allele retain the transmembrane domain of the receptor and are constitutively cleaved by the γ-secretase complex, resulting in high levels of NOTCH1 signaling that can be effectively blocked by γ-secretase inhibitors. Our results expand the spectrum of oncogenic lesions activating NOTCH1 signaling in human T-ALL.
Collapse
|