1
|
Singh A, Ravendranathan N, Frisbee JC, Singh KK. Complex Interplay between DNA Damage and Autophagy in Disease and Therapy. Biomolecules 2024; 14:922. [PMID: 39199310 PMCID: PMC11352539 DOI: 10.3390/biom14080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer, a multifactorial disease characterized by uncontrolled cellular proliferation, remains a global health challenge with significant morbidity and mortality. Genomic and molecular aberrations, coupled with environmental factors, contribute to its heterogeneity and complexity. Chemotherapeutic agents like doxorubicin (Dox) have shown efficacy against various cancers but are hindered by dose-dependent cytotoxicity, particularly on vital organs like the heart and brain. Autophagy, a cellular process involved in self-degradation and recycling, emerges as a promising therapeutic target in cancer therapy and neurodegenerative diseases. Dysregulation of autophagy contributes to cancer progression and drug resistance, while its modulation holds the potential to enhance treatment outcomes and mitigate adverse effects. Additionally, emerging evidence suggests a potential link between autophagy, DNA damage, and caretaker breast cancer genes BRCA1/2, highlighting the interplay between DNA repair mechanisms and cellular homeostasis. This review explores the intricate relationship between cancer, Dox-induced cytotoxicity, autophagy modulation, and the potential implications of autophagy in DNA damage repair pathways, particularly in the context of BRCA1/2 mutations.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Naresh Ravendranathan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
2
|
Biswas G, Mathew JG, Kaur A, Panchal KB. Utilizing a Second Flap to Address the Effect of Postradiotherapy Soft Tissue Fibrosis in Head and Neck Malignancy. Indian J Plast Surg 2024; 57:31-38. [PMID: 38450016 PMCID: PMC10914542 DOI: 10.1055/s-0044-1779476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
Background Late effects of adjuvant radiation therapy (RT) on soft tissues can lead to hair loss, pigmentary changes, loss of tissue volume, and fibrosis, which appear months to years after the treatment. These changes are often progressive and are because of tissue hypoxia due to radiation-induced capillary endothelial damage. Tissue hypoxia may be compounded by subclinical infection following minor trauma, exposed hardware, or associated osteoradionecrosis. The combined effect of these factors causes significant deformities in soft tissue, affecting both function and appearance. Such changes are also seen in primarily transferred flaps, which have been radiated, resulting in severe, progressive soft tissue fibrosis, compromising function and aesthetics. In selected cases, a second flap may be needed to restore function and volume. Methods Data of patients who underwent secondary soft tissue transfers for postradiotherapy-related soft tissue changes were collected from the hospital electronic medical records, from January 2019 to 2023. Details regarding the primary surgery, dose, duration of adjuvant RT, time interval between adjuvant RT and secondary soft tissue transfer, indications, and the choice of the second flap were analyzed. Results Twenty-one patients had undergone secondary soft tissue transfer for extensive soft tissue fibrosis. In addition, associated compounding features like exposed implant and volume loss were observed. Two patients with osteoradionecrosis also had associated extensive soft tissue fibrosis necessitating replacement. Out of these 21 patients, 13 had undergone free tissue transfers, while 7 locoregional tissue transfers. Conclusion Late sequelae of adjuvant RT changes usually present from 6 months onwards. The radiated hypoxic tissue, due to capillary damage, leads to a chronic progressive fibrotic stage, causing loss of soft tissue volume and fibrosis. Replacing this tissue with a vascularized flap helps to restore volume and correct these secondary changes, improving overall quality of life.
Collapse
Affiliation(s)
- Gautam Biswas
- Department of Plastic Reconstructive and Microsurgery, Tata Medical Centre, Kolkata, West Bengal, India
| | - Jovin George Mathew
- Department of Plastic Reconstructive and Microsurgery, Tata Medical Centre, Kolkata, West Bengal, India
| | - Amrita Kaur
- Department of Plastic Reconstructive and Microsurgery, Tata Medical Centre, Kolkata, West Bengal, India
| | - Karnav Bharat Panchal
- Department of Plastic Reconstructive and Microsurgery, Tata Medical Centre, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Orfanakos K, Alifieris CE, Verigos EK, Deligiorgi MV, Verigos KE, Panayiotidis MI, Nikolaou M, Trafalis DT. The Predictive Value of 8-Hydroxy-Deoxyguanosine (8-OHdG) Serum Concentrations in Irradiated Non-Small Cell Lung Carcinoma (NSCLC) Patients. Biomedicines 2024; 12:134. [PMID: 38255239 PMCID: PMC10813052 DOI: 10.3390/biomedicines12010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Ionizing radiation is strongly linked to direct or indirect DNA damage, as with the production of reactive oxygen species (ROS), which in turn produce DNA damage products, such as 8-hydroxy-2-deoxyguanosine (8-OHdG). In this study, we aimed to investigate the formation of 8-OHdG after irradiation in patients with non-small cell cancer (NSCLC) and its use as a biomarker. Sixteen patients with squamous and thirty-six patients with non-squamous pathology were included. An enzyme-linked-immunosorbent assay (ELISA) was performed before and after radiation. A dose-dependent relationship was confirmed: 8-OHdG plasma concentrations, increased in the total of NSCLC patients and specifically with a linear correlation in non-squamous pathology; in squamous histology, after an initial increase, a significant decrease followed after 20 Gy dose of irradiation. The pretreatment total irradiated tumor volume (cm3) was positively correlated with 8-OHdG levels in patients with squamous histology. When plotting the 8-OHdG plasma concentration at a 10 Gy irradiation dose to the baseline, the AUC was 0.873 (95% CI 0.614-0.984), p < 0.0001, with an associated criterion value of >1378 as a cutoff (sensitivity 72.7%, specificity 100%). When normalizing this ratio to BSA, the associated criterion cutoff value was >708 (sensitivity of 100%, specificity 80%). Lastly, 8-OHdG levels were closely related with the development of radiation-induced toxicities.
Collapse
Affiliation(s)
- Kyriakos Orfanakos
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.O.); (M.V.D.); (K.E.V.); (D.T.T.)
- Department of Radiation Therapy, 401 General Military Hospital, 11525 Athens, Greece
| | - Constantinos E. Alifieris
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.O.); (M.V.D.); (K.E.V.); (D.T.T.)
- Department of Hepatobiliary and Transplant Surgery, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Emmanouil K. Verigos
- Department of Radiation Oncology, General Anticancer Oncology Hospital of Athens “O Agios Savvas”, 11522 Athens, Greece
| | - Maria V. Deligiorgi
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.O.); (M.V.D.); (K.E.V.); (D.T.T.)
| | - Kosmas E. Verigos
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.O.); (M.V.D.); (K.E.V.); (D.T.T.)
- Department of Radiation Therapy, 401 General Military Hospital, 11525 Athens, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus
| | - Michail Nikolaou
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.O.); (M.V.D.); (K.E.V.); (D.T.T.)
| | - Dimitrios T. Trafalis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (K.O.); (M.V.D.); (K.E.V.); (D.T.T.)
| |
Collapse
|
4
|
Gao Z, Zhao Q, Xu Y, Wang L. Improving the efficacy of combined radiotherapy and immunotherapy: focusing on the effects of radiosensitivity. Radiat Oncol 2023; 18:89. [PMID: 37226275 DOI: 10.1186/s13014-023-02278-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Cancer treatment is gradually entering an era of precision, with multitude studies in gene testing and immunotherapy. Tumor cells can be recognized and eliminated by the immune system through the expression of tumor-associated antigens, but when the cancer escapes or otherwise suppresses immunity, the balance between cancer cell proliferation and immune-induced cancer cell killing may be interrupted, resulting in tumor proliferation and progression. There has been significant attention to combining conventional cancer therapies (i.e., radiotherapy) with immunotherapy as opposed to treatment alone. The combination of radio-immunotherapy has been demonstrated in both basic research and clinical trials to provide more effective anti-tumor responses. However, the absolute benefits of radio-immunotherapy are dependent on individual characteristics and not all patients can benefit from radio-immunotherapy. At present, there are numerous articles about exploring the optimal models for combination radio-immunotherapy, but the factors affecting the efficacy of the combination, especially with regard to radiosensitivity remain inconclusive. Radiosensitivity is a measure of the response of cells, tissues, or individuals to ionizing radiation, and various studies have shown that the radiosensitivity index (RSI) will be a potential biomarker for predicting the efficacy of combination radio-immunotherapy. The purpose of this review is to focus on the factors that influence and predict the radiosensitivity of tumor cells, and to evaluate the impact and predictive significance of radiosensitivity on the efficacy of radio-immunotherapy combination.
Collapse
Affiliation(s)
- Zhiru Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Qian Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430064, China
| | - Yiyue Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
5
|
Identification of S100A9 as a Potential Inflammation-Related Biomarker for Radiation-Induced Lung Injury. J Clin Med 2023; 12:jcm12030733. [PMID: 36769382 PMCID: PMC9917937 DOI: 10.3390/jcm12030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Radiation-induced lung injury (RILI), a potentially fatal and dose-limiting complication of radiotherapy for thoracic tumors, is divided into early reversible pneumonitis and irreversible advanced-stage fibrosis. Early detection and intervention contribute to improving clinical outcomes of patients. However, there is still a lack of reliable biomarkers for early prediction and clinical diagnosis of RILI. Given the central role of inflammation in the initiation and progression of RILI, we explored specific inflammation-related biomarkers during the development of RILI in this study. Two expression profiles from the Gene Expression Omnibus (GEO) database were downloaded, in which 75 differentially expressed genes (DEGs) were screened out. Combining Gene Oncology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and protein-protein interaction (PPI) network analysis, we identified four inflammation-related hub genes in the progression of RILI-MMP9, IL-1β, CCR1 and S100A9. The expression levels of the hub genes were verified in RILI mouse models, with S100A9 showing the highest level of overexpression. The level of S100A9 in bronchoalveolar lavage fluid (BALF) and the expression of S100A9 in lung tissues were positively correlated with the degree of inflammation in RILI. The results above indicate that S100A9 is a potential biomarker for the early prediction and diagnosis of the development of RILI.
Collapse
|
6
|
Pavlopoulou A, Asfa S, Gioukakis E, Mavragani IV, Nikitaki Z, Takan I, Pouget JP, Harrison L, Georgakilas AG. In Silico Investigation of the Biological Implications of Complex DNA Damage with Emphasis in Cancer Radiotherapy through a Systems Biology Approach. Molecules 2021; 26:molecules26247602. [PMID: 34946681 PMCID: PMC8708251 DOI: 10.3390/molecules26247602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/16/2022] Open
Abstract
Different types of DNA lesions forming in close vicinity, create clusters of damaged sites termed as “clustered/complex DNA damage” and they are considered to be a major challenge for DNA repair mechanisms resulting in significant repair delays and induction of genomic instability. Upon detection of DNA damage, the corresponding DNA damage response and repair (DDR/R) mechanisms are activated. The inability of cells to process clustered DNA lesions efficiently has a great impact on the normal function and survival of cells. If complex lesions are left unrepaired or misrepaired, they can lead to mutations and if persistent, they may lead to apoptotic cell death. In this in silico study, and through rigorous data mining, we have identified human genes that are activated upon complex DNA damage induction like in the case of ionizing radiation (IR) and beyond the standard DNA repair pathways, and are also involved in cancer pathways, by employing stringent bioinformatics and systems biology methodologies. Given that IR can cause repair resistant lesions within a short DNA segment (a few nm), thereby augmenting the hazardous and toxic effects of radiation, we also investigated the possible implication of the most biologically important of those genes in comorbid non-neoplastic diseases through network integration, as well as their potential for predicting survival in cancer patients.
Collapse
Affiliation(s)
- Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey; (A.P.); (S.A.); (I.T.)
- Izmir International Biomedicine and Genome Institute, Genomics and Molecular Biotechnology Department, Dokuz Eylül University, Balcova, Izmir 35220, Turkey
| | - Seyedehsadaf Asfa
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey; (A.P.); (S.A.); (I.T.)
- Izmir International Biomedicine and Genome Institute, Genomics and Molecular Biotechnology Department, Dokuz Eylül University, Balcova, Izmir 35220, Turkey
| | - Evangelos Gioukakis
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Zografou, Greece; (E.G.); (I.V.M.); (Z.N.)
| | - Ifigeneia V. Mavragani
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Zografou, Greece; (E.G.); (I.V.M.); (Z.N.)
| | - Zacharenia Nikitaki
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Zografou, Greece; (E.G.); (I.V.M.); (Z.N.)
| | - Işıl Takan
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey; (A.P.); (S.A.); (I.T.)
- Izmir International Biomedicine and Genome Institute, Genomics and Molecular Biotechnology Department, Dokuz Eylül University, Balcova, Izmir 35220, Turkey
| | - Jean-Pierre Pouget
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, 34298 Montpellier, France;
| | - Lynn Harrison
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA;
| | - Alexandros G. Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Zografou, Greece; (E.G.); (I.V.M.); (Z.N.)
- Correspondence: ; Tel.: +30-210-772-4453
| |
Collapse
|
7
|
Dragojevic S, Ji J, Singh PK, Connors MA, Mutter RW, Lester SC, Talele SM, Zhang W, Carlson BL, Remmes NB, Park SS, Elmquist WF, Krishnan S, Tryggestad EJ, Sarkaria JN. Preclinical Risk Evaluation of Normal Tissue Injury With Novel Radiosensitizers. Int J Radiat Oncol Biol Phys 2021; 111:e54-e62. [PMID: 34400266 PMCID: PMC8764622 DOI: 10.1016/j.ijrobp.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022]
Abstract
Genotoxic damage induced by radiation triggers a highly coordinated DNA damage response, and molecular inhibitors of key nodes within this complex response network can profoundly enhance the antitumor efficacy of radiation. This is especially true for drugs targeting the catalytic subunit of DNA-dependent protein kinase, which is a core component of the nonhomologous end-joining DNA repair pathway, and ataxia telangiectasia mutated, which coordinates cell cycle arrest, apoptosis, and DNA repair functionalities after radiation exposure. Unlike the more modest in vitro radiosensitizing effects seen with classic sensitizing agents such as cisplatin, 5-fluorouracil, or taxanes, DNA-dependent protein kinase or ataxia telangiectasia mutated inhibitors provide much more robust sensitizing effects in vitro, as might be anticipated from targeting these key DNA repair modulators. However, patients with homozygous inactivating mutations of ataxia telangiectasia mutated or mice with homozygous defects in DNA-dependent protein kinase (severe combined immunodeficiency) have profoundly enhanced acute normal tissue radiation reactions. Therefore, there is significant potential that the combination of small molecule inhibitors of these kinases with radiation could cause similar dose-limiting acute normal tissue toxicities. Similarly, although less understood, inhibition of these DNA repair response pathways could markedly increase the risk of late radiation toxicities. Because these potent radiosensitizers could be highly useful to improve local control of otherwise radiation-resistant tumors, understanding the potential for elevated risks of radiation injury is essential for optimizing therapeutic ratio and developing safe and informative clinical trials. In this review, we will discuss 2 straightforward models to assess the potential for enhanced mucosal toxicity in the oral cavity and small intestine established in our laboratories. We also will discuss similar strategies for evaluating potential drug-radiation interactions with regard to increased risks of debilitating late effects.
Collapse
Affiliation(s)
- Sonja Dragojevic
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Jianxiong Ji
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota; Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pankaj K Singh
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | | | - Robert W Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Scott C Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Surabhi M Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Wenjuan Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Brett L Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Sean S Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | | | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
8
|
VAV2 is required for DNA repair and implicated in cancer radiotherapy resistance. Signal Transduct Target Ther 2021; 6:322. [PMID: 34462423 PMCID: PMC8405816 DOI: 10.1038/s41392-021-00735-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy remains the mainstay for treatment of various types of human cancer; however, the clinical efficacy is often limited by radioresistance, in which the underlying mechanism is largely unknown. Here, using esophageal squamous cell carcinoma (ESCC) as a model, we demonstrate that guanine nucleotide exchange factor 2 (VAV2), which is overexpressed in most human cancers, plays an important role in primary and secondary radioresistance. We have discovered for the first time that VAV2 is required for the Ku70/Ku80 complex formation and participates in non-homologous end joining repair of DNA damages caused by ionizing radiation. We show that VAV2 overexpression substantially upregulates signal transducer and activator of transcription 1 (STAT1) and the STAT1 inhibitor Fludarabine can significantly promote the sensitivity of radioresistant patient-derived ESCC xenografts in vivo in mice to radiotherapy. These results shed new light on the mechanism of cancer radioresistance, which may be important for improving clinical radiotherapy.
Collapse
|
9
|
Craig DJ, Nanavaty NS, Devanaboyina M, Stanbery L, Hamouda D, Edelman G, Dworkin L, Nemunaitis JJ. The abscopal effect of radiation therapy. Future Oncol 2021; 17:1683-1694. [PMID: 33726502 DOI: 10.2217/fon-2020-0994] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Radiation therapy (RT) in some cases results in a systemic anticancer response known as the abscopal effect. Multiple hypotheses support the role of immune activation initiated by RT-induced DNA damage. Optimal radiation dose is necessary to promote the cGAS-STING pathway in response to radiation and initiate an IFN-1 signaling cascade that promotes the maturation and migration of dendritic cells to facilitate antigen presentation and stimulation of cytotoxic T cells. T cells then exert a targeted response throughout the body at areas not subjected to RT. These effects are further augmented through the use of immunotherapeutic drugs resulting in increased T-cell activity. Tumor-infiltrating lymphocyte presence and TREX1, KPNA2 and p53 signal expression are being explored as prognostic biomarkers.
Collapse
Affiliation(s)
- Daniel J Craig
- Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - Nisha S Nanavaty
- Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - Monika Devanaboyina
- Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - Laura Stanbery
- Department of Medical Affairs, Gradalis, Inc, Carrollton, TX 75006, USA
| | - Danae Hamouda
- Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - Gerald Edelman
- Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA.,Promedica Health System, Toledo, OH 43606, USA
| | - Lance Dworkin
- Department of Internal Medicine, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - John J Nemunaitis
- Department of Medical Affairs, Gradalis, Inc, Carrollton, TX 75006, USA
| |
Collapse
|
10
|
Verigos KE, Sagredou S, Orfanakos K, Dalezis P, Trafalis DT. 8-Hydroxy-2'-Deoxyguanosine and 8-Nitroguanine Production and Detection in Blood Serum of Breast Cancer Patients in Response to Postoperative Complementary External Ionizing Irradiation of Normal Tissues. Dose Response 2021; 18:1559325820982172. [PMID: 33424517 PMCID: PMC7758665 DOI: 10.1177/1559325820982172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
It is widely known that ionizing irradiation is strongly linked to the production of reactive oxygen (ROS) and nitrative species (RNS) through which DNA damage products like 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-nitroguanine (8-NG) are generated, respectively. In the present study, we aimed to investigate the formation of 8-OHdG and 8-NG upon irradiation and to further explore whether alterations in their concentration levels are related to the administered radiation doses and exposure time. Our research work was conducted in blood serum samples collected from 33 breast cancer patients who received adjuvant radiotherapy. The detection of 8-OHdG and 8-NG was assessed by enzyme-linked immunosorbent assay. Our results suggest that both, 8-OHdG and 8-NG, were formed during the radiation regimen. Significant correlations with radiation dose were also demonstrated by the dose-response curves of 8-OHdG and 8-NG, fitted by logarithmic distribution and polynomial regression, respectively. More precisely, 8-OHdG and 8-NG concentrations (ng/mL) were considerably increased when patients received ionizing radiation up to 30 Gy whereas irradiation over 30 Gy did not induce any further increases. The current study supports a) the production of 8-OHdG and 8-NG during radiotherapy and b) significant correlations between either 8-OHdG or 8-NG levels and radiation doses, indicating a radiation-dose-dependent relationship.
Collapse
Affiliation(s)
- Kosmas E Verigos
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Department of Radiation Therapy, 401 General Military Hospital, Athens, Greece
| | - Sofia Sagredou
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyriakos Orfanakos
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Radiation Therapy Clinic-A, "Metaxa" Cancer Hospital, Piraeus, Greece
| | - Panayiotis Dalezis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Prediction of Poor Response to Neoadjuvant Chemoradiation in Patients With Rectal Cancer Using a DNA Repair Deregulation Score: Picking the Losers Instead of the Winners. Dis Colon Rectum 2020; 63:300-309. [PMID: 31842156 DOI: 10.1097/dcr.0000000000001564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Patients with rectal cancer may undergo neoadjuvant chemoradiation even in early stages in an attempt to achieve complete clinical response and undergo organ preservation. However, prediction of tumor response is unavailable. In this setting, accurate identification of poor responders could spare patients with early stage disease from potentially unnecessary chemoradiation. OBJECTIVE This study focused on development/test of a score based on DNA repair gene expression to predict response to neoadjuvant chemoradiation in patients with rectal cancer. DESIGN Pretreatment biopsy samples from patients with rectal cancer undergoing neoadjuvant chemoradiation were collected and underwent gene expression analysis using RNA-Seq (test cohort). A score was constructed using 8 differentially expressed DNA repair genes between good (complete clinical) and poor responders (incomplete clinical) to treatment. The score was validated in 2 independent cohorts of patients undergoing similar treatment strategies and using quantitative polymerase chain reaction and microarray gene expression data. SETTINGS This was a retrospective analysis of gene expression data from 3 independent institutions. PATIENTS Patients with rectal cancer undergoing neoadjuvant chemoradiation (50.4-54.0 Gy and 5-fluorouracil-based chemotherapy) were eligible. Patients with complete clinical response, complete pathological response, or ≤10% residual cancer cells were considered good responders. Patients with >10% residual cancer cells were considered poor responders. The test cohort included 25 patients (16 poor responders). Validation cohort 1 included 28 patients (18 poor responders), and validation cohort 2 included 46 patients (22 poor responders). MAIN OUTCOMES MEASURES Response was correlated with the DNA repair score calculated using the expression levels of 8 DNA repair genes. DNA repair score sensitivity, specificity, and positive and negative predictive values were determined in test and validation cohorts. RESULTS Poor responders had significantly lower DNA repair scores when compared with good responders across all 3 cohorts, regardless of the gene expression platform used. A low score correctly predicted poor response in 93%, 90%, and 71% in test, validation 1, and validation 2 cohorts. LIMITATIONS This study was limited by its small sample size, different gene expression platforms, and treatment regimens across different cohorts used. CONCLUSIONS A DNA repair gene score may predict patients likely to have poor response to chemoradiation. This score may be a relevant tool to be investigated in future studies focused on chemoradiation used in the context of organ preservation. See Video Abstract at http://links.lww.com/DCR/B104. PREDICCIÓN DE RESPUESTA DEFICIENTE A LA RADIO-QUIMIOTERAPIA NEOADYUVANTE EN PACIENTES CON CÁNCER RECTAL UTILIZANDO UNA PUNTUACIÓN DE DESREGULACIÓN DE REPARACIÓN DE ADN: ESCOGER LOS PERDEDORES EN LUGAR DE LOS GANADORES: Los pacientes con cáncer rectal pueden someterse a radio-quimioterapia neoadyuvante incluso en estadios tempranos en el intento por lograr una respuesta clínica completa y permitir una preservación de órgano. Sin embargo, aun no existen herramientas disponible para la prediccion de la respuesta tumoral al tratamiento. En este contexto, la identificación precisa de los tumores con mala respuesta al tratamiento podría evitar que los pacientes con enfermedad en estadio temprano sean sometidos a radio-quimioterapia potencialmente innecesaria.Desarrollo / testeo de una puntuación basada en la expresión genes reparadores del ADN para predecir la respuesta a la nCRT en pacientes con cáncer rectal.Se recogieron muestras de biopsia de pre-tratamiento de pacientes con cáncer rectal sometidos a radio-quimioterapia neoadyuvante y se les realizó un análisis de expresión génica utilizando RNAseq (cohorte de prueba). Se construyó una puntuación utilizando 8 genes de reparación de ADN expresados diferencialmente entre buenos (respuesta clinica completa) y pobres respondedores (respuesta clinica incompleta) al tratamiento. La puntuación se validó en 2 cohortes independientes de pacientes sometidos a estrategias de tratamiento similares y utilizando qPCR y datos de expresión de genes en chips ADN (biotecnología -microarrays).Análisis retrospectivo de los datos de expresión génica de 3 instituciones independientes.Fueron incluidos aquellos pacientes con cáncer rectal sometidos a radio-quimioterapia neoadyuvante (50,4-54 Gy y quimioterapia basada en 5FU). Los pacientes con respuesta clínica completa, respuesta patológica completa o ≤10% de células cancerosas residuales se consideraron buenos respondedores. Los pacientes con> 10% de células cancerosas residuales se consideraron de respuesta deficiente. La cohorte de prueba incluyó a 25 pacientes (16 respondedores pobres). La cohorte de validación n. ° 1 incluyó a 28 pacientes (18 respondedores pobres) y la cohorte de validación n. ° 2 incluyó a 46 pacientes (22 respondedores pobres).La respuesta se correlacionó con la puntuación de reparación de ADN calculada utilizando los niveles de expresión de 8 genes de reparación de ADN. La sensibilidad del puntaje de reparación del ADN, la especificidad, los valores predictivos positivos y negativos se determinaron en las cohortes de prueba y validación.Los malos respondedores tuvieron puntuaciones de reparación de ADN significativamente más bajas en comparación con los buenos respondedores en las 3 cohortes, independientemente de la plataforma de expresión génica utilizada. Una puntuación baja predijo correctamente una respuesta pobre en el 93%, 90% y 71% en las cohortes de prueba, validación n. ° 1 y validación n. ° 2, respectivamente.Pequeño tamaño de la muestra, diferentes plataformas de expresión génica y regímenes de tratamiento en diferentes cohortes utilizadas.La puntuacion basada en genes de reparación del ADN puede predecir los pacientes con respuesta pobre a la radio-quimioterapia. Esta puntuación puede ser una herramienta relevante para investigar en futuros estudios centrados en la radio-quimioterapia utilizada en el contexto de la preservación de órganos. Consulte Video Resumen en http://links.lww.com/DCR/B104. (Traducción-Dr. Xavier Delgadillo and Dr. Laura Melina Fernandez).
Collapse
|
12
|
A pooled mutational analysis identifies ionizing radiation-associated mutational signatures conserved between mouse and human malignancies. Sci Rep 2017; 7:7645. [PMID: 28794481 PMCID: PMC5550450 DOI: 10.1038/s41598-017-07888-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 07/05/2017] [Indexed: 12/21/2022] Open
Abstract
Single nucleotide variants (SNVs) identified in cancer genomes can be de-convolved using non-negative matrix factorization (NMF) into discrete trinucleotide-based mutational signatures indicative of specific cancer-causing processes. The stability of NMF-generated mutational signatures depends upon the numbers of variants available for analysis. In this work, we sought to assess whether data from well-controlled mouse models can compensate for scarce human data for some cancer types. High quality sequencing data from radiotherapy-induced cancers is particularly scarce and the mutational processes defining ionizing radiation (IR)-induced mutagenesis in vivo are poorly defined. Here, we combine sequencing data from mouse models of IR-induced malignancies and human IR-induced malignancies. To determine whether the signatures identified from IR-exposed subjects can be differentiated from other mutagenic signatures, we included data from an ultraviolet radiation (UV)-induced human skin cancer and from a mouse model of urethane-induced cancers. NMF distinguished all three mutagens and in the pooled analysis IR was associated with mutational signatures common to both species. These findings illustrate the utility of pooled analysis of mouse and human sequencing data.
Collapse
|
13
|
Epperla N, Pham AQ, Burnette BL, Wiseman GA, Habermann TM, Macon WR, Ansell SM, Inwards DJ, Micallef IN, Johnston PB, Markovic SN, Porrata LF, Colgan JP, Ristow KM, Nowakowski GS, Witzig TE. Risk of histological transformation and therapy-related myelodysplasia/acute myeloid leukaemia in patients receiving radioimmunotherapy for follicular lymphoma. Br J Haematol 2017; 178:427-433. [PMID: 28466487 DOI: 10.1111/bjh.14688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/02/2017] [Indexed: 01/15/2023]
Abstract
Histological transformation (HT) of follicular lymphoma (FL) to an aggressive lymphoma after chemotherapy remains a key issue. The incidence of HT after radioimmunotherapy (RIT) is unknown. This single institution study analysed the risk of HT in FL after treatment with yttrium-90 ibritumomab tiuxetan in 115 consecutive patients treated during 1987-2012. RIT was administered for progressive FL in 111 (97%) patients and as first-line therapy in the remaining 4. 28% (n = 32) had HT, occurring at a median of 60 months from diagnosis and 20 months after RIT. 48% (12/25) of patients who received fludarabine developed HT. The estimated 10-year risk of HT in the fludarabine and non-fludarabine groups was 67% and 26% respectively (P = 0·015). Only prior fludarabine was significantly associated with predicting the risk of HT after RIT. 8% (9/115) of patients developed therapy-related myelodysplastic syndrome/acute myeloid leukaemia (tMDS/AML) at a median of 41·4 months (range, 5-89). The estimated 10-year risk of tMDS/AML in non-fludarabine treated patients (n = 90) versus fludarabine treated (n = 25) was 13% and 29%, respectively. The estimated overall risk of FL undergoing HT at 10 years without fludarabine exposure appears similar to patients reported in the literature that have not received RIT. Patients with prior purine-analogue therapy are at significantly higher risk of HT.
Collapse
Affiliation(s)
- Narendranath Epperla
- Department of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anthony Q Pham
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - William R Macon
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | - Luis F Porrata
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Kay M Ristow
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
14
|
Borrego-Soto G, Ortiz-López R, Rojas-Martínez A. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet Mol Biol 2015; 38:420-32. [PMID: 26692152 PMCID: PMC4763322 DOI: 10.1590/s1415-475738420150019] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/15/2015] [Indexed: 12/26/2022] Open
Abstract
Breast cancer is the most common malignancy in women. Radiotherapy is frequently used in patients with breast cancer, but some patients may be more susceptible to ionizing radiation, and increased exposure to radiation sources may be associated to radiation adverse events. This susceptibility may be related to deficiencies in DNA repair mechanisms that are activated after cell-radiation, which causes DNA damage, particularly DNA double strand breaks. Some of these genetic susceptibilities in DNA-repair mechanisms are implicated in the etiology of hereditary breast/ovarian cancer (pathologic mutations in the BRCA 1 and 2 genes), but other less penetrant variants in genes involved in sporadic breast cancer have been described. These same genetic susceptibilities may be involved in negative radiotherapeutic outcomes. For these reasons, it is necessary to implement methods for detecting patients who are susceptible to radiotherapy-related adverse events. This review discusses mechanisms of DNA damage and repair, genes related to these functions, and the diagnosis methods designed and under research for detection of breast cancer patients with increased radiosensitivity.
Collapse
Affiliation(s)
- Gissela Borrego-Soto
- Departamento de Bioquímica y Medicina Molecular, Facultad de
Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
- Centro de Investigación y Desarrollo en Ciencias de la Salud,
Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Rocío Ortiz-López
- Departamento de Bioquímica y Medicina Molecular, Facultad de
Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
- Centro de Investigación y Desarrollo en Ciencias de la Salud,
Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Augusto Rojas-Martínez
- Departamento de Bioquímica y Medicina Molecular, Facultad de
Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
- Centro de Investigación y Desarrollo en Ciencias de la Salud,
Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| |
Collapse
|
15
|
Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, Keller M, Kobrynski LJ, Komarow HD, Mazer B, Nelson RP, Orange JS, Routes JM, Shearer WT, Sorensen RU, Verbsky JW, Bernstein DI, Blessing-Moore J, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Randolph CR, Schuller D, Spector SL, Tilles S, Wallace D. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol 2015; 136:1186-205.e1-78. [PMID: 26371839 DOI: 10.1016/j.jaci.2015.04.049] [Citation(s) in RCA: 427] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/18/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023]
Abstract
The American Academy of Allergy, Asthma & Immunology (AAAAI) and the American College of Allergy, Asthma & Immunology (ACAAI) have jointly accepted responsibility for establishing the "Practice parameter for the diagnosis and management of primary immunodeficiency." This is a complete and comprehensive document at the current time. The medical environment is a changing environment, and not all recommendations will be appropriate for all patients. Because this document incorporated the efforts of many participants, no single individual, including those who served on the Joint Task Force, is authorized to provide an official AAAAI or ACAAI interpretation of these practice parameters. Any request for information about or an interpretation of these practice parameters by the AAAAI or ACAAI should be directed to the Executive Offices of the AAAAI, the ACAAI, and the Joint Council of Allergy, Asthma & Immunology. These parameters are not designed for use by pharmaceutical companies in drug promotion.
Collapse
|
16
|
Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med 2014; 20:1242-53. [PMID: 25375928 DOI: 10.1038/nm.3739] [Citation(s) in RCA: 838] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/29/2014] [Indexed: 02/07/2023]
Abstract
Ubiquitination is crucial for a plethora of physiological processes, including cell survival and differentiation and innate and adaptive immunity. In recent years, considerable progress has been made in the understanding of the molecular action of ubiquitin in signaling pathways and how alterations in the ubiquitin system lead to the development of distinct human diseases. Here we describe the role of ubiquitination in the onset and progression of cancer, metabolic syndromes, neurodegenerative diseases, autoimmunity, inflammatory disorders, infection and muscle dystrophies. Moreover, we indicate how current knowledge could be exploited for the development of new clinical therapies.
Collapse
Affiliation(s)
- Doris Popovic
- 1] Institute of Biochemistry II, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [2] Buchmann Institute for Molecular Life Sciences, Goethe University School of Medicine, University Hospital, Frankfurt, Germany
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, Inc., South San Francisco, California, USA
| | - Ivan Dikic
- 1] Institute of Biochemistry II, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [2] Buchmann Institute for Molecular Life Sciences, Goethe University School of Medicine, University Hospital, Frankfurt, Germany. [3] Department of Immunology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
17
|
Loss of TRPM2 function protects against irradiation-induced salivary gland dysfunction. Nat Commun 2013; 4:1515. [PMID: 23443543 DOI: 10.1038/ncomms2526] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 01/18/2013] [Indexed: 01/12/2023] Open
Abstract
Xerostomia as a result of salivary gland damage is a permanent and debilitating side effect of radiotherapy for head and neck cancers. Effective treatments for protecting, or restoring, salivary gland function are not available. Here we report that irradiation treatment leads to activation of the calcium-permeable channel, transient potential melastatin-like 2 (TRPM2), via stimulation of poly-ADP-ribose polymerase. Importantly, irradiation induced an irreversible loss of salivary gland fluid secretion in TRPM2+/+ mice while a transient loss was seen in TRPM2-/- mice with >60% recovery by 30 days after irradiation. Treatment of TRPM2+/+ mice with the free radical scavenger Tempol or the PARP1 inhibitor 3-aminobenzamide attenuated irradiation-induced activation of TRPM2 and induced significant recovery of salivary fluid secretion. Furthermore, TPL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) induced complete recovery of function in irradiated TRPM2-/- mice. These novel data demonstrate that TRPM2 is activated by irradiation, via PARP1 activation, and contributes to irreversible loss of salivary gland function.
Collapse
|
18
|
Abstract
FUS1/TUSC2 is a mitochondrial tumor suppressor with activity to regulate cellular oxidative stress by maintaining balanced ROS production and mitochondrial homeostasis. Fus1 expression is inhibited by ROS, suggesting that individuals with a high level of ROS may have lower Fus1 in normal tissues and, thus, may be more prone to oxidative stress-induced side effects of cancer treatment, including radiotherapy. As the role of Fus1 in the modulation of cellular radiosensitivity is unknown, we set out to determine molecular mechanisms of Fus1 involvement in the IR response in normal tissues. Mouse whole-body irradiation methodology was employed to determine the role for Fus1 in the radiation response and explore underlying molecular mechanisms. Fus1(-/-) mice were more susceptible to radiation compared with Fus1(+/+) mice, exhibiting increased mortality and accelerated apoptosis of the GI crypt epithelial cells. Following untimely reentrance into the cell cycle, the Fus1(-/-) GI crypt cells died at accelerated rate via mitotic catastrophe that resulted in diminished and/or delayed crypt regeneration after irradiation. At the molecular level, dysregulated dynamics of activation of main IR response proteins (p53, NFκB, and GSK-3β), as well as key signaling pathways involved in oxidative stress response (SOD2, PRDX1, and cytochrome c), apoptosis (BAX and PARP1), cell cycle (Cyclins B1 and D1), and DNA repair (γH2AX) were found in Fus1(-/-) cells after irradiation. Increased radiosensitivity of other tissues, such as immune cells and hair follicles was also detected in Fus1(-/-) mice. Our findings demonstrate a previously unknown radioprotective function of the mitochondrial tumor suppressor Fus1 in normal tissues and suggest new individualized therapeutic approaches based on Fus1 expression.
Collapse
|
19
|
ID1 affects the efficacy of radiotherapy in glioblastoma through inhibition of DNA repair pathways. Med Oncol 2013; 30:325. [DOI: 10.1007/s12032-012-0325-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/30/2012] [Indexed: 01/16/2023]
|
20
|
Runkle EA, Zhang H, Cai Z, Zhu Z, Karger BL, Wu SL, O'Rourke DM, Zhou Z, Wang Q, Greene MI. Reversion of the ErbB malignant phenotype and the DNA damage response. Exp Mol Pathol 2012; 93:324-33. [PMID: 23022358 DOI: 10.1016/j.yexmp.2012.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/18/2022]
Abstract
The ErbB or HER family is a group of membrane bound tyrosine kinase receptors that initiate signal transduction cascades, which are critical to a wide range of biological processes. When over-expressed or mutated, members of this kinase family form homomeric or heteromeric kinase assemblies that are involved in certain human malignancies. Targeted therapy evolved from studies showing that monoclonal antibodies to the ectodomain of ErbB2/neu would reverse the malignant phenotype. Unfortunately, tumors develop resistance to targeted therapies even when coupled with genotoxic insults such as radiation. Radiation treatment predominantly induces double strand DNA breaks, which, if not repaired, are potentially lethal to the cell. Some tumors are resistant to radiation treatment because they effectively repair double strand breaks. We and others have shown that even in the presence of ionizing radiation, active ErbB kinase signaling apparently enhances the repair process, such that transformed cells resist genotoxic signal induced cell death. We review here the current understanding of ErbB signaling and DNA double strand break repair. Some studies have identified a mechanism by which DNA damage is coordinated to assemblies of proteins that associate with SUN domain containing proteins. These assemblies represent a new target for therapy of resistant tumor cells.
Collapse
Affiliation(s)
- E Aaron Runkle
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Leechawengwongs E, Shearer WT. Lymphoma complicating primary immunodeficiency syndromes. Curr Opin Hematol 2012; 19:305-12. [DOI: 10.1097/moh.0b013e328353fa13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|