1
|
Gong J, Yang R, Zhou M, Chang LJ. Improved intravenous lentiviral gene therapy based on endothelial-specific promoter-driven factor VIII expression for hemophilia A. Mol Med 2023; 29:74. [PMID: 37308845 DOI: 10.1186/s10020-023-00680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Hemophilia A (HA) is an X-linked monogenic disorder caused by deficiency of the factor VIII (FVIII) gene in the intrinsic coagulation cascade. The current protein replacement therapy (PRT) of HA has many limitations including short term effectiveness, high cost, and life-time treatment requirement. Gene therapy has become a promising treatment for HA. Orthotopic functional FVIII biosynthesis is critical to its coagulation activities. METHODS To investigate targeted FVIII expression, we developed a series of advanced lentiviral vectors (LVs) carrying either a universal promoter (EF1α) or a variety of tissue-specific promoters, including endothelial-specific (VEC), endothelial and epithelial-specific (KDR), and megakaryocyte-specific (Gp and ITGA) promoters. RESULTS To examine tissue specificity, the expression of a B-domain deleted human F8 (F8BDD) gene was tested in human endothelial and megakaryocytic cell lines. Functional assays demonstrated FVIII activities of LV-VEC-F8BDD and LV-ITGA-F8BDD in the therapeutic range in transduced endothelial and megakaryocytic cells, respectively. In F8 knockout mice (F8 KO mice, F8null mice), intravenous (iv) injection of LVs illustrated different degrees of phenotypic correction as well as anti-FVIII immune response for the different vectors. The iv delivery of LV-VEC-F8BDD and LV-Gp-F8BDD achieved 80% and 15% therapeutic FVIII activities over 180 days, respectively. Different from the other LV constructs, the LV-VEC-F8BDD displayed a low FVIII inhibitory response in the treated F8null mice. CONCLUSIONS The LV-VEC-F8BDD exhibited high LV packaging and delivery efficiencies, with endothelial specificity and low immunogenicity in the F8null mice, thus has a great potential for clinical applications.
Collapse
Affiliation(s)
- Jie Gong
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Rui Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Min Zhou
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lung-Ji Chang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Shenzhen Geno-Immune Medical Institute, 6 Yuexing 2nd Rd., 2nd Floor, Nanshan Dist., Shenzhen, 518057, Guangdong Province, China.
| |
Collapse
|
2
|
Pablo-Moreno JAD, Serrano LJ, Revuelta L, Sánchez MJ, Liras A. The Vascular Endothelium and Coagulation: Homeostasis, Disease, and Treatment, with a Focus on the Von Willebrand Factor and Factors VIII and V. Int J Mol Sci 2022; 23:ijms23158283. [PMID: 35955419 PMCID: PMC9425441 DOI: 10.3390/ijms23158283] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
The vascular endothelium has several important functions, including hemostasis. The homeostasis of hemostasis is based on a fine balance between procoagulant and anticoagulant proteins and between fibrinolytic and antifibrinolytic ones. Coagulopathies are characterized by a mutation-induced alteration of the function of certain coagulation factors or by a disturbed balance between the mechanisms responsible for regulating coagulation. Homeostatic therapies consist in replacement and nonreplacement treatments or in the administration of antifibrinolytic agents. Rebalancing products reestablish hemostasis by inhibiting natural anticoagulant pathways. These agents include monoclonal antibodies, such as concizumab and marstacimab, which target the tissue factor pathway inhibitor; interfering RNA therapies, such as fitusiran, which targets antithrombin III; and protease inhibitors, such as serpinPC, which targets active protein C. In cases of thrombophilia (deficiency of protein C, protein S, or factor V Leiden), treatment may consist in direct oral anticoagulants, replacement therapy (plasma or recombinant ADAMTS13) in cases of a congenital deficiency of ADAMTS13, or immunomodulators (prednisone) if the thrombophilia is autoimmune. Monoclonal-antibody-based anti-vWF immunotherapy (caplacizumab) is used in the context of severe thrombophilia, regardless of the cause of the disorder. In cases of disseminated intravascular coagulation, the treatment of choice consists in administration of antifibrinolytics, all-trans-retinoic acid, and recombinant soluble human thrombomodulin.
Collapse
Affiliation(s)
- Juan A. De Pablo-Moreno
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - Luis Javier Serrano
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
| | - Luis Revuelta
- Department of Physiology, School of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María José Sánchez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía, Pablo de Olavide University, 41013 Sevilla, Spain;
| | - Antonio Liras
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University, 28040 Madrid, Spain; (J.A.D.P.-M.); (L.J.S.)
- Correspondence:
| |
Collapse
|
3
|
Barbon S, Stocco E, Rajendran S, Zardo L, Macchi V, Grandi C, Tagariello G, Porzionato A, Radossi P, De Caro R, Parnigotto PP. In Vitro Conditioning of Adipose-Derived Mesenchymal Stem Cells by the Endothelial Microenvironment: Modeling Cell Responsiveness towards Non-Genetic Correction of Haemophilia A. Int J Mol Sci 2022; 23:ijms23137282. [PMID: 35806285 PMCID: PMC9266329 DOI: 10.3390/ijms23137282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
In recent decades, the use of adult multipotent stem cells has paved the way for the identification of new therapeutic approaches for the treatment of monogenic diseases such as Haemophilia A. Being already studied for regenerative purposes, adipose-derived mesenchymal stem cells (Ad-MSCs) are still poorly considered for Haemophilia A cell therapy and their capacity to produce coagulation factor VIII (FVIII) after proper stimulation and without resorting to gene transfection. In this work, Ad-MSCs were in vitro conditioned towards the endothelial lineage, considered to be responsible for coagulation factor production. The cells were cultured in an inductive medium enriched with endothelial growth factors for up to 21 days. In addition to significantly responding to the chemotactic endothelial stimuli, the cell populations started to form capillary-like structures and up-regulated the expression of specific endothelial markers (CD34, PDGFRα, VEGFR2, VE-cadherin, CD31, and vWF). A dot blot protein study detected the presence of FVIII in culture media collected from both unstimulated and stimulated Ad-MSCs. Remarkably, the activated partial thromboplastin time test demonstrated that the clot formation was accelerated, and FVIII activity was enhanced when FVIII deficient plasma was mixed with culture media from the untreated/stimulated Ad-MSCs. Overall, the collected evidence supported a possible Ad-MSC contribution to HA correction via specific stimulation by the endothelial microenvironment and without any need for gene transfection.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35124 Padova, Italy;
| | - Lorena Zardo
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
| | - Claudio Grandi
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Giuseppe Tagariello
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Paolo Radossi
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
- Correspondence:
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| |
Collapse
|
4
|
Noda M, Tatsumi K, Matsui H, Matsunari Y, Sato T, Fukuoka Y, Hotta A, Okano T, Kichikawa K, Sugimoto M, Shima M, Nishio K. Development of alternative gene transfer techniques for ex vivo and in vivo gene therapy in a canine model. Regen Ther 2021; 18:347-354. [PMID: 34584911 PMCID: PMC8441024 DOI: 10.1016/j.reth.2021.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Gene therapy have recently attracted much attention as a curative therapeutic option for inherited single gene disorders such as hemophilia. Hemophilia is a hereditary bleeding disorder caused by the deficiency of clotting activity of factor VIII (FVIII) or factor IX (FIX), and gene therapy for hemophilia using viral vector have been vigorously investigated worldwide. Toward further advancement of gene therapy for hemophilia, we have previously developed and validated the efficacy of novel two types of gene transfer technologies using a mouse model of hemophilia A. Here we investigated the efficacy and safety of the technologies in canine model. Especially, validations of technical procedures of the gene transfers for dogs were focused. METHODS Green fluorescence protein (GFP) gene were transduced into normal beagle dogs by ex vivo and in vivo gene transfer techniques. For ex vivo gene transfer, blood outgrowth endothelial cells (BOECs) derived from peripheral blood of normal dogs were transduced with GFP gene using lentivirus vector, propagated, fabricated as cell sheets, then implanted onto the omentum of the same dogs. For in vivo gene transfer, normal dogs were subjected to GFP gene transduction with non-viral piggyBac vector by liver-targeted hydrodynamic injections. RESULTS No major adverse events were observed during the gene transfers in both gene transfer systems. As for ex vivo gene transfer, histological findings from the omental biopsy performed 4 weeks after implantation revealed the tube formation by implanted GFP-positive BOECs in the sub-adipose tissue layer without any inflammatory findings, and the detected GFP signals were maintained over 6 months. Regarding in vivo gene transfer, analyses of liver biopsy samples revealed more than 90% of liver cells were positive for GFP signals in the injected liver lobes 1 week after gene transfers, then the signals gradually declined overtime. CONCLUSIONS Two types of gene transfer techniques were successfully applied to a canine model, and the transduced gene expressions persisted for a long term. Toward clinical application for hemophilia patients, practical assessments of therapeutic efficacy of these techniques will need to be performed using a dog model of hemophilia and FVIII (or FIX) gene.
Collapse
Affiliation(s)
- Masashi Noda
- Department of General Medicine, Nara Medical University, Kashihara, Japan
| | - Kohei Tatsumi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, Kashihara, Japan
| | - Hideto Matsui
- Department of General Medicine, Nara Medical University, Kashihara, Japan
| | | | - Takeshi Sato
- Department of Diagnostic Radiology and IVR, Nara Medical University, Kashihara, Japan
| | - Yasushi Fukuoka
- Department of Diagnostic Radiology and IVR, Nara Medical University, Kashihara, Japan
| | - Akitsu Hotta
- Department of Reprogramming Science, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Kimihiko Kichikawa
- Department of Diagnostic Radiology and IVR, Nara Medical University, Kashihara, Japan
| | - Mitsuhiko Sugimoto
- Department of General Medicine, Nara Medical University, Kashihara, Japan
| | | | - Kenji Nishio
- Department of General Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
5
|
Restoration of FVIII expression by targeted gene insertion in the FVIII locus in hemophilia A patient-derived iPSCs. Exp Mol Med 2019; 51:1-9. [PMID: 30996250 PMCID: PMC6470126 DOI: 10.1038/s12276-019-0243-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 12/22/2022] Open
Abstract
Target-specific genome editing, using engineered nucleases zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), is considered a promising approach to correct disease-causing mutations in various human diseases. In particular, hemophilia A can be considered an ideal target for gene modification via engineered nucleases because it is a monogenic disease caused by a mutation in coagulation factor VIII (FVIII), and a mild restoration of FVIII levels in plasma can prevent disease symptoms in patients with severe hemophilia A. In this study, we describe a universal genome correction strategy to restore FVIII expression in induced pluripotent stem cells (iPSCs) derived from a patient with hemophilia A by the human elongation factor 1 alpha (EF1α)-mediated normal FVIII gene expression in the FVIII locus of the patient. We used the CRISPR/Cas9-mediated homology-directed repair (HDR) system to insert the B-domain deleted from the FVIII gene with the human EF1α promoter. After gene targeting, the FVIII gene was correctly inserted into iPSC lines at a high frequency (81.81%), and these cell lines retained pluripotency after knock-in and neomycin resistance cassette removal. More importantly, we confirmed that endothelial cells from the gene-corrected iPSCs could generate functionally active FVIII protein from the inserted FVIII gene. This is the first demonstration that the FVIII locus is a suitable site for integration of the normal FVIII gene and can restore FVIII expression by the EF1α promoter in endothelial cells differentiated from the hemophilia A patient-derived gene-corrected iPSCs. A strategy to restore the expression of the gene encoding blood clotting factor VIII (FVIII) offers new hope to patients with hemophilia A. Hemophilia A is a rare bleeding disorder caused by a variety of mutations in the FVIII gene which affect the function of FVIII protein. At present, the main treatment option relies on the injection of expensive clotting-factor concentrates to restore functional levels of the FVIII. Dong-Wook Kim and colleagues at Yonsei University in Seoul, South Korea, have used genome editing techniques to insert a corrected version of the FVIII gene into stem cells derived from a patient with severe hemophilia A. When these cells differentiated into the cells lining blood vessels they were able to produce and secrete active FVIII protein. This approach offers the attractive possibility of correcting all hemophilia-causing FVIII mutations.
Collapse
|
6
|
Kumar P, Gao K, Wang C, Pivetti C, Lankford L, Farmer D, Wang A. In Utero Transplantation of Placenta-Derived Mesenchymal Stromal Cells for Potential Fetal Treatment of Hemophilia A. Cell Transplant 2019; 27:130-139. [PMID: 29562772 PMCID: PMC6434487 DOI: 10.1177/0963689717728937] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hemophilia A (HA) is an X-linked recessive disorder caused by mutations in the factor VIII (FVIII) gene leading to deficient blood coagulation. The current standard of care is frequent infusions of plasma-derived FVIII or recombinant B-domain-deleted FVIII (BDD-FVIII). While this treatment is effective, many patients eventually develop FVIII inhibitors that limit the effectiveness of the infused FVIII. As a monogenic disorder, HA is an ideal target for gene or cell-based therapy. Several studies have investigated allogeneic stem cell therapy targeting in utero or postnatal treatment of HA but have not been successful in completely correcting HA. Autologous in utero transplantation of mesenchymal stem cells is promising for treatment of HA due to the naive immune status of the fetal environment as well as its potential to prevent transplant rejection and long-term FVIII inhibitor formation. HA can be diagnosed by chorionic villus sampling performed during the first trimester (10 to 13 wk) of gestation. In this study, we used an established protocol and isolated placenta-derived mesenchymal stromal cells (PMSCs) from first trimester chorionic villus tissue and transduced them with lentiviral vector encoding the BDD-FVIII gene. We show that gene-modified PMSCs maintain their immunophenotype and multipotency, express, and secrete high levels of active FVIII. PMSCs were then transplanted at embryonic day 14.5 (E14.5) into wild-type fetuses from time-mated pregnant mice. Four days after birth, pups were checked for engraftment, and varying levels of expression of human green fluorescent protein were found in the organs tested. This study shows feasibility of the approach to obtain PMSCs from first trimester chorionic villus tissue, genetically modify them with the FVIII gene, and transplant them in utero for cell-mediated gene therapy of HA. Future studies will involve evaluation of long-term engraftment, phenotypic correction in HA mice, and prevention of FVIII inhibitor development by this approach.
Collapse
Affiliation(s)
- Priyadarsini Kumar
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA
| | - Kewa Gao
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA.,2 Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Chuwang Wang
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA.,2 Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Christopher Pivetti
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA
| | - Lee Lankford
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA
| | - Diana Farmer
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA
| | - Aijun Wang
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
7
|
Gao K, Kumar P, Cortez-Toledo E, Hao D, Reynaga L, Rose M, Wang C, Farmer D, Nolta J, Zhou J, Zhou P, Wang A. Potential long-term treatment of hemophilia A by neonatal co-transplantation of cord blood-derived endothelial colony-forming cells and placental mesenchymal stromal cells. Stem Cell Res Ther 2019; 10:34. [PMID: 30670078 PMCID: PMC6341603 DOI: 10.1186/s13287-019-1138-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 01/02/2023] Open
Abstract
Background Hemophilia A (HA) is an X-linked recessive disorder caused by mutations in the Factor VIII (FVIII) gene leading to deficient blood coagulation. As a monogenic disorder, HA is an ideal target for cell-based gene therapy, but successful treatment has been hampered by insufficient engraftment of potential therapeutic cells. Methods In this study, we sought to determine whether co-transplantation of endothelial colony-forming cells (ECFCs) and placenta-derived mesenchymal stromal cells (PMSCs) can achieve long-term engraftment and FVIII expression. ECFCs and PMSCs were transduced with a B domain deleted factor VIII (BDD-FVIII) expressing lentiviral vector and luciferase, green fluorescent protein or Td-Tomato containing lentiviral tracking vectors. They were transplanted intramuscularly into neonatal or adult immunodeficient mice. Results In vivo bioluminescence imaging showed that the ECFC only and the co-transplantation groups but not the PMSCs only group achieved long-term engraftment for at least 26 weeks, and the co-transplantation group showed a higher engraftment than the ECFC only group at 16 and 20 weeks post-transplantation. In addition, cell transplantation at the neonatal age achieved higher engraftment than at the adult age. Immunohistochemical analyses further showed that the engrafted ECFCs expressed FVIII, maintained endothelial phenotype, and generated functional vasculature. Next, co-transplantation of ECFCs and PMSCs into F8 knock-out HA mice reduced the blood loss volume from 562.13 ± 19.84 μl to 155.78 ± 44.93 μl in a tail-clip assay. Conclusions This work demonstrated that co-transplantation of ECFCs with PMSCs at the neonatal age is a potential strategy to achieve stable, long-term engraftment, and thus holds great promise for cell-based treatment of HA. Electronic supplementary material The online version of this article (10.1186/s13287-019-1138-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kewa Gao
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.,Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA, 95817, USA
| | - Elizabeth Cortez-Toledo
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA, 95817, USA
| | - Lizette Reynaga
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA
| | - Melanie Rose
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA
| | - Chuwang Wang
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.,Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA, 95817, USA
| | - Jan Nolta
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
| | - Ping Zhou
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, CA, 95817, USA.
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA. .,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Northern California, Sacramento, CA, 95817, USA. .,Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Hu Z, Wu Y, Zhou M, Wang X, Pang J, Li Z, Feng M, Wang Y, Hu Q, Zhao J, Liu X, Wu L, Liang D. Generation of reporter hESCs by targeting EGFP at the CD144 locus to facilitate the endothelial differentiation. Dev Growth Differ 2018; 60:205-215. [PMID: 29696633 DOI: 10.1111/dgd.12433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022]
Abstract
Reporter embryonic stem cell (ESC) lines with tissue-specific reporter genes may contribute to optimizing the differentiation conditions in vitro as well as trafficking transplanted cells in vivo. To optimize and monitor endothelial cell (EC) differentiation specifically, here we targeted the enhanced green fluorescent protein (EGFP) reporter gene at the junction of 5'UTR and exon2 of the endothelial specific marker gene CD144 using TALENs in human ESCs (H9) to generate a EGFP-CD144-reporter ESC line. The reporter cells expressed EGFP and CD144 increasingly and specifically without unexpected effects during the EC differentiation. The EC differentiation protocol was optimized and applied to EC differentiation from hiPSCs, resulting in an efficient and simplified endothelial differentiation approach. Here we created our own optimized and robust protocol for EC differentiation of hESCs and hiPSCs by generating the lineage-specific site-specific integration reporter cell lines, showing great potential to be applied in the fields such as trafficking gene and cell fate in vivo in preclinical animal models.
Collapse
Affiliation(s)
- Zhiqing Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yong Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Miaojin Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaolin Wang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jialun Pang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhuo Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Mai Feng
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yanchi Wang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qian Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Junya Zhao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xionghao Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lingqian Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Desheng Liang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Evaluation of ex vivo produced endothelial progenitor cells for autologous transplantation in primates. Stem Cell Res Ther 2018; 9:14. [PMID: 29357928 PMCID: PMC5778763 DOI: 10.1186/s13287-018-0769-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 02/05/2023] Open
Abstract
Background Autologous transplantation of endothelial progenitor cells (EPCs) is a promising therapeutic approach in the treatment of various vascular diseases. We previously reported a two-step culture system for scalable generation of human EPCs derived from cord blood CD34+ cells ex vivo. Here, we now apply this culture system to expand and differentiate human and nonhuman primate EPCs from mobilized peripheral blood (PB) CD34+ cells for the therapeutic potential of autologous transplantation. Methods The human and nonhuman primate EPCs from mobilized PB CD34+ cells were cultured according to our previously reported system. The generated adherent cells were then characterized by the morphology, surface markers, nitric oxide (NO)/endothelial NO synthase (eNOS) levels and Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake/fluorescein isothiocyanate (FITC)-lectin binding actives. Furthermore, the efficacy and safety studies were performed by autologous transplantation via hepatic portal vein injection in a nonhuman primate model with acute liver sinusoidal endothelial cell injury. Results The mobilized PB CD34+ cells from both human and nonhuman primate were efficiently expanded and differentiated. Over 2 × 108 adherent cells were generated from 20 mL mobilized primate PB (1.51 × 106 ± 3.39 × 105 CD34+ cells) by 36-day culture and more than 80% of the produced cells were identified as EPCs/endothelial cells (ECs). In the autologous transplant model, the injected EPC/ECs from nonhuman primate PB were scattered in the intercellular spaces of hepatocytes at the hepatic tissues 14 days post-transplantation, indicating successful migration and reconstitution in the liver structure as the functional EPCs/ECs. Conclusions We successfully applied our previous two-step culture system for the generation of primate EPCs from mobilized PB CD34+ cells, evaluated the phenotypes ex vivo, and transplanted autologous EPCs/ECs in a nonhuman primate model. Our study indicates that it may be possible for these ex-vivo high-efficient expanded EPCs to be used in clinical cell therapy.
Collapse
|
10
|
Qin M, Guan X, Wang H, Zhang Y, Shen B, Zhang Q, Dai W, Ma Y, Jiang Y. An effective ex-vivo approach for inducing endothelial progenitor cells from umbilical cord blood CD34 + cells. Stem Cell Res Ther 2017; 8:25. [PMID: 28173870 PMCID: PMC5297174 DOI: 10.1186/s13287-017-0482-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/10/2017] [Accepted: 01/14/2017] [Indexed: 11/11/2022] Open
Abstract
Background Transplantation of endothelial progenitor cells (EPCs)/endothelial cells (ECs) has been used for the treatment of ischemic diseases and hemophilia A, due to their great capacity for producing factor VIII and for repairing vascular damage. We established an effective approach to stimulate the expansion and differentiation of EPCs for potential therapeutic applications. Methods CD34+ cells isolated from human cord blood were cultured in a two-step system for 21 days. The generated adherent cells were characterized via flow cytometry and immunofluorescent staining. Moreover, single-cell clonogenic and tube-forming assays were carried out to evaluate their potential to proliferate and form vessel networks. Furthermore, these cells were transplanted into a mouse model of hepatic sinusoidal endothelium injury by hepatic portal vein injection to investigate their in-vivo behavior. Results The two-step culture protocol promoted the expansion and differentiation of human cord blood CD34+ cells efficiently, resulting in a large number of adherent cells within 3 weeks. The generated adherent cells were identified as EPCs/ECs based on the expression of CD31, CD144, vWF, and FVIII, and cell numbers showed a 1400-fold increase compared with the initial number. Moreover, these EPCs/ECs were capable of proliferating and establishing colonies as individual cells, and forming tube-like structures. More significantly, tissue examination of mice after transplantation revealed that the injected EPCs/ECs migrated and integrated into the liver, reconstituting the sinusoidal endothelial compartment. Conclusions We developed an approach for the generation of cord blood-derived EPCs/ECs on a large scale, characterized them phenotypically, and demonstrated their in-vivo functional capacity. Our approach provides an excellent source of healthy EPCs/ECs for use in cell therapy in a clinical setting.
Collapse
Affiliation(s)
- Meng Qin
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Biopharmagen Corp., Suzhou, China
| | - Xin Guan
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Huihui Wang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Biopharmagen Corp., Suzhou, China
| | - Yu Zhang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Bin Shen
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Qingyu Zhang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,School of Public Health, University at Albany, Albany, NY, USA
| | - Wei Dai
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY, USA
| | - Yupo Ma
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Department of Pathology, BST-9C, The State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Yongping Jiang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China. .,Biopharmagen Corp., Suzhou, China.
| |
Collapse
|
11
|
Walsh CE, Batt KM. Hemophilia clinical gene therapy: brief review. Transl Res 2013; 161:307-12. [PMID: 23352600 DOI: 10.1016/j.trsl.2012.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/13/2012] [Accepted: 12/28/2012] [Indexed: 11/30/2022]
Abstract
Genetic correction of hemophilia A and B was long considered amenable to the available gene transfer technologies. This assumption has come to fruition with the recent results of a phase I/II trial for hemophilia B. Here we review the clinical application of gene therapy for the hemophilia's as a paradigm of the evolution of gene transfer science and technology. This review is not intended as comprehensive but rather to highlight current clinical developments of gene therapy for the hemophilias.
Collapse
|
12
|
Advanced therapies for the treatment of hemophilia: future perspectives. Orphanet J Rare Dis 2012; 7:97. [PMID: 23237078 PMCID: PMC3551751 DOI: 10.1186/1750-1172-7-97] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/07/2012] [Indexed: 11/24/2022] Open
Abstract
Monogenic diseases are ideal candidates for treatment by the emerging advanced therapies, which are capable of correcting alterations in protein expression that result from genetic mutation. In hemophilia A and B such alterations affect the activity of coagulation factors VIII and IX, respectively, and are responsible for the development of the disease. Advanced therapies may involve the replacement of a deficient gene by a healthy gene so that it generates a certain functional, structural or transport protein (gene therapy); the incorporation of a full array of healthy genes and proteins through perfusion or transplantation of healthy cells (cell therapy); or tissue transplantation and formation of healthy organs (tissue engineering). For their part, induced pluripotent stem cells have recently been shown to also play a significant role in the fields of cell therapy and tissue engineering. Hemophilia is optimally suited for advanced therapies owing to the fact that, as a monogenic condition, it does not require very high expression levels of a coagulation factor to reach moderate disease status. As a result, significant progress has been possible with respect to these kinds of strategies, especially in the fields of gene therapy (by using viral and non-viral vectors) and cell therapy (by means of several types of target cells). Thus, although still considered a rare disorder, hemophilia is now recognized as a condition amenable to gene therapy, which can be administered in the form of lentiviral and adeno-associated vectors applied to adult stem cells, autologous fibroblasts, platelets and hematopoietic stem cells; by means of non-viral vectors; or through the repair of mutations by chimeric oligonucleotides. In hemophilia, cell therapy approaches have been based mainly on transplantation of healthy cells (adult stem cells or induced pluripotent cell-derived progenitor cells) in order to restore alterations in coagulation factor expression.
Collapse
|
13
|
Current world literature. Curr Opin Pediatr 2012; 24:770-9. [PMID: 23146873 DOI: 10.1097/mop.0b013e32835af8de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|