1
|
Zangooie A, Tavoosi S, Arabhosseini M, Halimi A, Zangooie H, Baghsheikhi AH, Rahgozar S, Ahmadvand M, Jarrahi AM, Salehi Z. Ubiquitin-specific proteases (USPs) in leukemia: a systematic review. BMC Cancer 2024; 24:894. [PMID: 39048945 PMCID: PMC11270844 DOI: 10.1186/s12885-024-12614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Leukemia, a type of blood cell cancer, is categorized by the type of white blood cells affected (lymphocytes or myeloid cells) and disease progression (acute or chronic). In 2020, it ranked 15th among the most diagnosed cancers and 11th in cancer-related deaths globally, with 474,519 new cases and 311,594 deaths (GLOBOCAN2020). Research into leukemia's development mechanisms may lead to new treatments. Ubiquitin-specific proteases (USPs), a family of deubiquitinating enzymes, play critical roles in various biological processes, with both tumor-suppressive and oncogenic functions, though a comprehensive understanding is still needed. AIM This systematic review aimed to provide a comprehensive review of how Ubiquitin-specific proteases are involved in pathogenesis of different types of leukemia. METHODS We systematically searched the MEDLINE (via PubMed), Scopus, and Web of Science databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA) to identify relevant studies focusing on the role of USPs in leukemia. Data from selected articles were extracted, synthesized, and organized to present a coherent overview of the subject matter. RESULTS The review highlights the crucial roles of USPs in chromosomal aberrations, cell proliferation, differentiation, apoptosis, cell cycle regulation, DNA repair, and drug resistance. USP activity significantly impacts leukemia progression, inhibition, and chemotherapy sensitivity, suggesting personalized diagnostic and therapeutic approaches. Ubiquitin-specific proteases also regulate gene expression, protein stability, complex formation, histone deubiquitination, and protein repositioning in specific leukemia cell types. CONCLUSION The diagnostic, prognostic, and therapeutic implications associated with ubiquitin-specific proteases (USPs) hold significant promise and the potential to transform leukemia management, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Alireza Zangooie
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shima Tavoosi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahan Arabhosseini
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aram Halimi
- Research Center for Social Determinants of Health, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helia Zangooie
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Soheila Rahgozar
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Salehi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Targeting metabolic reprogramming in chronic lymphocytic leukemia. Exp Hematol Oncol 2022; 11:39. [PMID: 35761419 PMCID: PMC9235173 DOI: 10.1186/s40164-022-00292-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
Metabolic reprogramming, fundamentally pivotal in carcinogenesis and progression of cancer, is considered as a promising therapeutic target against tumors. In chronic lymphocytic leukemia (CLL) cells, metabolic abnormalities mediate alternations in proliferation and survival compared with normal B cells. However, the role of metabolic reprogramming is still under investigation in CLL. In this review, the critical metabolic processes of CLL were summarized, particularly glycolysis, lipid metabolism and oxidative phosphorylation. The effects of T cells and stromal cells in the microenvironment on metabolism of CLL were also elucidated. Besides, the metabolic alternation is regulated by some oncogenes and tumor suppressor regulators, especially TP53, MYC and ATM. Thus, the agents targeting metabolic enzymes or signal pathways may impede the progression of CLL. Both the inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) statins and the lipoprotein lipase inhibitor orlistat induce the apoptosis of CLL cells. In addition, a series of oxidative phosphorylation inhibitors play important roles in decreasing the proliferation of CLL cells. We epitomized recent advancements in metabolic reprogramming in CLL and discussed their clinical potentiality for innovative therapy options. Metabolic reprogramming plays a vital role in the initiation and progression of CLL. Therapeutic approaches targeting metabolism have their advantages in improving the survival of CLL patients. This review may shed novel light on the metabolism of CLL, leading to the development of targeted agents based on the reshaping metabolism of CLL cells.
Collapse
|
3
|
Du X, Liu H, Yang C, Shi X, Cao L, Zhao X, Miao Y, Zhu H, Wang L, Xu W, Li J, Fan L. LncRNA landscape analysis identified LncRNA LEF-AS1 as an oncogene that upregulates LEF1 and promotes survival in chronic lymphocytic leukemia. Leuk Res 2021; 110:106706. [PMID: 34563944 DOI: 10.1016/j.leukres.2021.106706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a malignant disorder of mature B lymphocytes, and the precise pathogenesis is largely unknown at present. This study set out to screen the differential expression profile of long non-coding RNA (lncRNA) by microarray and explore the underlying mechanism, biological function, and clinical significance of lncRNA in CLL cells. Compared to the lncRNA expression profiles of the control group, we picked lncRNA LEF1-AS1 for further exploration. By quantitative real-time polymerase chain reaction (qRT-PCR), we validated that primary CLL cells harbor higher lncRNA LEF1-AS1 levels than normal B cells. In the two cell lines with stable overexpression of LEF1-AS1, expression of LEF1 elevated on RNA and protein level, proliferation rates increased, and apoptosis rates decreased. In primary CLL cells, mRNA expression of LEF1 decreased by qRT-PCR after negatively regulating the expression of LEF1-AS1. RNA Binding Protein Immunoprecipitation and RNA pull-down demonstrated that LncRNA LEF1-AS1 and LEF1 protein could combine especially. This thesis concludes LEF1-AS1 may be an oncogenic lncRNA that regulates the target gene LEF1 by interacting with protein LEF1. However, the prognostic significance of lncRNA LEF1-AS1 in CLL patients is still unclear.
Collapse
MESH Headings
- Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Survival
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoid Enhancer-Binding Factor 1/genetics
- Lymphoid Enhancer-Binding Factor 1/metabolism
- Male
- RNA, Antisense/genetics
- RNA, Long Noncoding/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Xinyi Du
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Hematology, Subei People's Hospital, Yangzhou, China
| | - Hailing Liu
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Changqing Yang
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Shi
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Cao
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoli Zhao
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huayuan Zhu
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Wang
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Xu
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianyong Li
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Fan
- Department of Hematology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Davari N, Ahmadpour F, Kiani AA, Azadpour M, Asadi ZT. Evaluation of microRNA-223 and microRNA-125a expression association with STAT3 and Bcl2 genes in blood leukocytes of CLL patients: a case-control study. BMC Res Notes 2021; 14:21. [PMID: 33430952 PMCID: PMC8095339 DOI: 10.1186/s13104-020-05428-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE In chronic lymphocytic leukemia (CLL), lack of expression or dysregulation of some special miRs disrupts apoptosis of malignant cells; thereby miR expression can enhance cell proliferation, disease progression and decrease patient survival. RESULTS 30 CLL patients and 20 healthy individuals participated in the study. RNA was extracted to evaluate the expression of miR-125, miR-223, BCL-2 and signal transducer and transcription 3 activator (STAT3) genes; quantitative Real Time- PCR (Q-RT-PCR) was performed. MiR-125a and miR-223 expression decreased in the patients compared to the control group (P-Value:0.001). BCL-2 and STAT3 which are the target genes of these two miRs, showed increased expression, in the patients compared to the control subjects (P-Value: 0.001 and P-Value: 0.64 respectively). A significant reverse relationship was found between miR-125a and BCl-2 expression and WBC count. Significantly, miR-223 expression was associated with smoking in patients (P-Value: 0.007). Also, these miRs may have regulatory effects by controlling white blood cell (WBC) production based on the inverse correlation with WBC count and hemoglobin (Hb) concentration. Finally, miR-223 can be used as a prognostic factor in CLL patients; miR-125a may be useful for evaluating the therapeutic approaches based on the inverse link with BCl-2.
Collapse
Affiliation(s)
- Nader Davari
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Ahmadpour
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asghar Kiani
- Department of Hematology and Blood Transfusion, Lorestan University, Khoramabad, Iran
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Azadpour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zari Tahannejad Asadi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Clonal dynamics in chronic lymphocytic leukemia. Blood Adv 2020; 3:3759-3769. [PMID: 31770443 DOI: 10.1182/bloodadvances.2019000367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic lymphocytic leukemia has a highly variable disease course across patients, thought to be driven by the vast inter- and intrapatient molecular heterogeneity described in several large-scale DNA-sequencing studies conducted over the past decade. Although the last 5 years have seen a dramatic shift in the therapeutic landscape for chronic lymphocytic leukemia, including the regulatory approval of several potent targeted agents (ie, idelalisib, ibrutinib, venetoclax), the vast majority of patients still inevitably experience disease recurrence or persistence. Recent genome-wide sequencing approaches have helped to identify subclonal populations within tumors that demonstrate a broad spectrum of somatic mutations, diverse levels of response to therapy, patterns of repopulation, and growth kinetics. Understanding the impact of genetic, epigenetic, and transcriptomic features on clonal growth dynamics and drug response will be an important step toward the selection and timing of therapy.
Collapse
|
6
|
Gutierrez C, Wu CJ. Clonal dynamics in chronic lymphocytic leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:466-475. [PMID: 31808879 PMCID: PMC6913465 DOI: 10.1182/hematology.2019000367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic lymphocytic leukemia has a highly variable disease course across patients, thought to be driven by the vast inter- and intrapatient molecular heterogeneity described in several large-scale DNA-sequencing studies conducted over the past decade. Although the last 5 years have seen a dramatic shift in the therapeutic landscape for chronic lymphocytic leukemia, including the regulatory approval of several potent targeted agents (ie, idelalisib, ibrutinib, venetoclax), the vast majority of patients still inevitably experience disease recurrence or persistence. Recent genome-wide sequencing approaches have helped to identify subclonal populations within tumors that demonstrate a broad spectrum of somatic mutations, diverse levels of response to therapy, patterns of repopulation, and growth kinetics. Understanding the impact of genetic, epigenetic, and transcriptomic features on clonal growth dynamics and drug response will be an important step toward the selection and timing of therapy.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Epigenesis, Genetic
- Gene Expression Regulation, Leukemic
- Genome-Wide Association Study
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Male
- Middle Aged
- Mutation
- Piperidines
- Purines/therapeutic use
- Pyrazoles/therapeutic use
- Pyrimidines/therapeutic use
- Quinazolinones/therapeutic use
- Sulfonamides/therapeutic use
- Transcriptome
- Whole Genome Sequencing
Collapse
Affiliation(s)
- Catherine Gutierrez
- Harvard Medical School, Boston, MA; and Dana-Farber Cancer Institute, Boston, MA
| | - Catherine J Wu
- Harvard Medical School, Boston, MA; and Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
7
|
Zhang H, Luo S, Zhang X, Liao J, Quan F, Zhao E, Zhou C, Yu F, Yin W, Zhang Y, Xiao Y, Li X. SEECancer: a resource for somatic events in evolution of cancer genome. Nucleic Acids Res 2019; 46:D1018-D1026. [PMID: 29069402 PMCID: PMC5753201 DOI: 10.1093/nar/gkx964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/09/2017] [Indexed: 01/08/2023] Open
Abstract
Cancer cells progressively evolve from a premalignant to a malignant state, which is driven by accumulating somatic alterations that confer normal cells a fitness advantage. Improvements in high-throughput sequencing techniques have led to an increase in construction of tumor phylogenetics and identification of somatic driver events that specifically occurred in different tumor progression stages. Here, we developed the SEECancer database (http://biocc.hrbmu.edu.cn/SEECancer), which aims to present the comprehensive cancer evolutionary stage-specific somatic events (including early-specific, late-specific, relapse-specific, metastasis-specific, drug-resistant and drug-induced genomic events) and their temporal orders. By manually curating over 10 000 published articles, 1231 evolutionary stage-specific genomic events and 5772 temporal orders involving 82 human cancers and 23 tissue origins were collected and deposited in the SEECancer database. Each entry contains the somatic event, evolutionary stage, cancer type, detection approach and relevant evidence. SEECancer provides a user-friendly interface for browsing, searching and downloading evolutionary stage-specific somatic events and temporal relationships in various cancers. With increasing attention on cancer genome evolution, the necessary information in SEECancer will facilitate understanding of cancer etiology and development of evolutionary therapeutics, and help clinicians to discover biomarkers for monitoring tumor progression.
Collapse
Affiliation(s)
- Hongyi Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Shangyi Luo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xinxin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jianlong Liao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Fei Quan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Erjie Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Chenfen Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Fulong Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Wenkang Yin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
8
|
Kubczak M, Szustka A, Błoński JZ, Gucký T, Misiewicz M, Krystof V, Robak P, Rogalińska M. Dose and drug changes in chronic lymphocytic leukemia cell response in vitro: A comparison of standard therapy regimens with two novel cyclin‑dependent kinase inhibitors. Mol Med Rep 2019; 19:3593-3603. [PMID: 30864706 PMCID: PMC6470834 DOI: 10.3892/mmr.2019.10007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 02/02/2019] [Indexed: 11/29/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) treatment is improving; however, some patients do not respond to therapy. Due to the high heterogeneity in disease development, there is an urgent need for personalization of therapy. In the present study, the response of leukemic mononuclear cells to anticancer drugs used for CLL treatment (cladribine + mafosfamide; CM or CM combined with rituximab; RCM) was compared with the response to new cyclin-dependent kinase (CDK) inhibitors: BP14 and BP30. Viable apoptotic and necrotic cells were quantified by flow cytometry using propidium iodide and Yo-Pro stains. CDK inhibitors were studied in several doses to determine the reduction of necrosis and simultaneous increase of apoptosis in leukemic cell incubations with anticancer agents. The distinct cell response to applied doses/anticancer agents was observed. Results obtained in the current manuscript confirmed that modulation of doses is important. This was particularly indicated in results obtained at 24 h of cells incubation with anticancer agent. While an important time for analysis of anticancer response efficacy (monitoring of apoptosis induction potential) seems to be 48 h of cells exposition to anticancer agents. High variability in response to the drugs revealed that both the nature and the dose of the anticancer agents could be important in the final effect of the therapy. The present findings support the thesis that personalized medicine, before drug administration in the clinic, could be important to avoid the application of ineffective therapy.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90‑236 Lodz, Poland
| | - Aleksandra Szustka
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90‑236 Lodz, Poland
| | - Jerzy Z Błoński
- Department of Hematology, Medical University of Lodz, 93‑510 Lodz, Poland
| | - Tomaš Gucký
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 78371 Olomouc, Czech Republic
| | | | - Vladmir Krystof
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany AS CR, 78371 Olomouc, Czech Republic
| | - Paweł Robak
- Department of Experimental Hematology, Medical University of Lodz, 93‑510 Lodz, Poland
| | - Małgorzata Rogalińska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90‑236 Lodz, Poland
| |
Collapse
|
9
|
Altered patterns of global protein synthesis and translational fidelity in RPS15-mutated chronic lymphocytic leukemia. Blood 2018; 132:2375-2388. [PMID: 30181176 DOI: 10.1182/blood-2017-09-804401] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 08/24/2018] [Indexed: 12/17/2022] Open
Abstract
Genomic studies have recently identified RPS15 as a new driver gene in aggressive and chemorefractory cases of chronic lymphocytic leukemia (CLL). RPS15 encodes a ribosomal protein whose conserved C-terminal domain extends into the decoding center of the ribosome. We demonstrate that mutations in highly conserved residues of this domain affect protein stability, by increasing its ubiquitin-mediated degradation, and cell-proliferation rates. On the other hand, we show that mutated RPS15 can be loaded into the ribosomes, directly impacting on global protein synthesis and/or translational fidelity in a mutation-specific manner. Quantitative mass spectrometry analyses suggest that RPS15 variants may induce additional alterations in the translational machinery, as well as a metabolic shift at the proteome level in HEK293T and MEC-1 cells. These results indicate that CLL-related RPS15 mutations might act following patterns known for other ribosomal diseases, likely switching from a hypo- to a hyperproliferative phenotype driven by mutated ribosomes. In this scenario, loss of translational fidelity causing altered cell proteostasis can be proposed as a new molecular mechanism involved in CLL pathobiology.
Collapse
|
10
|
Ioannidou A, Zachaki S, Karakosta M, Daraki A, Roussou P, Manola KN. Cohesin RAD21 Gene Promoter Methylation in Patients with Chronic Lymphocytic Leukemia. Cytogenet Genome Res 2018; 154:126-131. [PMID: 29587287 DOI: 10.1159/000487868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 12/23/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults and is characterized by the presence of specific cytogenetic abnormalities. CLL research has been focused on epigenetic processes like gene promoter methylation of CpG islands. In the present study, the methylation status of the RAD21 gene is studied and associated with cytogenetic findings in CLL patients in order to investigate its possible implication in CLL pathogenesis and the formation of CLL chromosomal abnormalities.
Collapse
|
11
|
Sandoval-Sus JD, Chavez JC, Dalia S, Naqvi SMH, Talati C, Nodzon L, Kharfan-Dabaja MA, Pinilla-Ibarz J. Association between immunoglobulin heavy-chain variable region mutational status and isolated favorable baseline genomic aberrations in chronic lymphocytic leukemia. Leuk Lymphoma 2018; 59:59-68. [PMID: 28641468 PMCID: PMC7771359 DOI: 10.1080/10428194.2017.1323271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Immunoglobulin heavy-chain variable region (IGHV) mutational status and karyotype abnormalities are important prognostic factors in chronic lymphocytic leukemia (CLL). The goal was to assess the impact of IGHV in CLL patients with isolated favorable genetic aberrations (del13q, trisomy 12, or negative fluorescence in situ hybridization [FISH]). We studied 273 CLL patients with both IGHV mutational status and cytogenetic information: 145 with isolated del13q 49 with sole trisomy 12 and 79 with negative FISH. After a median follow-up of 7.8 years, patients with del13q-unmutated IGHV had a shorter time to first treatment (TFT) (2.98 vs. 17.44 years; p < .001) and shorter overall survival (10.45 years vs. not reached; p = .0026). Patients with negative FISH-unmutated IGHV had shorter TFT (p = .02) (3.10 vs. 9.75 years, p = .053). IGHV status did not influence clinical outcomes in trisomy 12 CLL. In conclusion, IGHV mutational status shows prognostic impact in CLL patients with good prognosis genomic features.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers
- Chromosomes, Human, Pair 12
- Female
- Genomics/methods
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- In Situ Hybridization, Fluorescence
- Karyotype
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Middle Aged
- Mutation
- Neoplasm Staging
- Prognosis
- Survival Analysis
- Trisomy
Collapse
Affiliation(s)
- Jose D. Sandoval-Sus
- H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL, USA
| | - Julio C. Chavez
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Samir Dalia
- Mercy Clinic Oncology and Hematology, Joplin, MO, USA
| | - Syeda Mahrukh Hussnain Naqvi
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chetasi Talati
- H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL, USA
| | - Lisa Nodzon
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mohamed A. Kharfan-Dabaja
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Javier Pinilla-Ibarz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
12
|
Kuriyama K, Enomoto Y, Suzuki R, Watanuki J, Hosoi H, Yamashita Y, Murata S, Mushino T, Tamura S, Hanaoka N, Dyer M, Siebert R, Kiyonari H, Nakakuma H, Kitamura T, Sonoki T. Enforced expression of MIR142, a target of chromosome translocation in human B-cell tumors, results in B-cell depletion. Int J Hematol 2017; 107:345-354. [PMID: 29071477 DOI: 10.1007/s12185-017-2360-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/22/2022]
Abstract
MicroRNA142 (MIR142) is a target of chromosome translocations and mutations in human B-cell lymphomas. We analyzed an aggressive B-cell lymphoma carrying t(8;17)(q24;q22) and t(6;14)(p21;q32), and sought to explore the role(s) of MIR142 in lymphomagenesis. t(8;17)(q24;q22) involved MYC on 8q24 and pri-MIR142 on 17q22. MYC was activated by a promoter substitution by t(8;17)(q24;q22). t(8;17)(q24;q22) was an additional event after t(6;14) (p21;q32), which caused the over-expression of CCND3. Southern blot analyses revealed that the MIR142 locus was deleted from the affected allele, whereas Northern analyses showed over-expression of MIR142 in tumor cells. Although previous studies reported an over-expression of mutations in MIR142 in B-cell lymphomas, limited information is available on the functions of MIR142 in lymphomagenesis. Therefore, we generated bone marrow transplantation (BMT) and transgenic (Eμ/mir142) mice, which showed enforced expression in hematopoietic progenitor cells and B cells, respectively. BMT mice showed decreased numbers of all lineage-positive cells, particularly B cells, in peripheral blood. Eμ/mir142 mice showed decreased numbers of IgM-positive splenocytes, and exhibited altered B-cell phenotypic changes induced by lipopolysaccharide. Our results suggest that over-expression of MIR142 alters B-cell differentiation, implying multi-step lymphomagenesis together with MYC activation and CCND3 over-expression.
Collapse
Affiliation(s)
- Kodai Kuriyama
- Hematology/Oncology, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, 641-8510, Japan
| | - Yutaka Enomoto
- Division of Cellular Therapy and Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Ritsuro Suzuki
- Hematology and Oncology, Shimane Medical University, Shimane, Japan
| | - Jyuri Watanuki
- Hematology/Oncology, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, 641-8510, Japan
| | - Hiroki Hosoi
- Hematology/Oncology, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, 641-8510, Japan
| | - Yusuke Yamashita
- Hematology/Oncology, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, 641-8510, Japan
| | - Shogo Murata
- Hematology/Oncology, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, 641-8510, Japan
| | - Toshiki Mushino
- Hematology/Oncology, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, 641-8510, Japan
| | - Shinobu Tamura
- Hematology/Oncology, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, 641-8510, Japan
| | - Nobuyoshi Hanaoka
- Hematology/Oncology, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, 641-8510, Japan
| | - Martin Dyer
- Department of Cancer Studies and Molecular Medicine, Leicester Medical School, University of Leicester, Leicester, UK
| | - Reiner Siebert
- Institute of Human Genetics, Christian Albrechts University Kiel, Kiel, Germany.,Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Hiroshi Kiyonari
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Hideki Nakakuma
- Hematology/Oncology, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, 641-8510, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy and Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Sonoki
- Hematology/Oncology, Wakayama Medical University, 811-1 Kimi-idera, Wakayama, 641-8510, Japan.
| |
Collapse
|
13
|
Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood 2017; 130:410-423. [PMID: 28600336 DOI: 10.1182/blood-2017-02-734541] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Genomic analysis has greatly influenced the diagnosis and clinical management of patients affected by diverse forms of hematologic malignancies. Here, we review how genetic alterations define subclasses of patients with acute leukemias, myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPNs), non-Hodgkin lymphomas, and classical Hodgkin lymphoma. These include new subtypes of acute myeloid leukemia defined by mutations in RUNX1 or BCR-ABL1 translocations as well as a constellation of somatic structural DNA alterations in acute lymphoblastic leukemia. Among patients with MDS, detection of mutations in SF3B1 define a subgroup of patients with the ring sideroblast form of MDS and a favorable prognosis. For patients with MPNs, detection of the BCR-ABL1 fusion delineates chronic myeloid leukemia from classic BCR-ABL1- MPNs, which are largely defined by mutations in JAK2, CALR, or MPL In the B-cell lymphomas, detection of characteristic rearrangements involving MYC in Burkitt lymphoma, BCL2 in follicular lymphoma, and MYC/BCL2/BCL6 in high-grade B-cell lymphomas are essential for diagnosis. In T-cell lymphomas, anaplastic large-cell lymphoma is defined by mutually exclusive rearrangements of ALK, DUSP22/IRF4, and TP63 Genetic alterations affecting TP53 and the mutational status of the immunoglobulin heavy-chain variable region are important in clinical management of chronic lymphocytic leukemia. Additionally, detection of BRAFV600E mutations is helpful in the diagnosis of classical hairy cell leukemia and a number of histiocytic neoplasms. Numerous additional examples provided here demonstrate how clinical evaluation of genomic alterations have refined classification of myeloid neoplasms and major forms of lymphomas arising from B, T, or natural killer cells.
Collapse
|
14
|
Goy J, Gillan TL, Bruyere H, Huang SJT, Hrynchak M, Karsan A, Ramadan K, Connors J, Toze CL, Gerrie AS. Chronic Lymphocytic Leukemia Patients With Deletion 11q Have a Short Time to Requirement of First-Line Therapy, But Long Overall Survival: Results of a Population-Based Cohort in British Columbia, Canada. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2017; 17:382-389. [PMID: 28559149 DOI: 10.1016/j.clml.2017.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/26/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) patients with 11q22.3 deletion (11q-) have an aggressive clinical course, and thus selection of first-line therapy in this group is important. This study aimed to improve our understanding of real-world practice patterns and outcomes of CLL patients with 11q- in a population-based setting. PATIENTS AND METHODS The British Columbia CLL Database was used to identify patients with 11q-. Overall survival (OS) and treatment-free survival (TFS) were assessed after adjustment for prognostic factors. RESULTS Of 1044 patients in the database, 125 had 11q- (12%). Sixty-nine patients had 11q- identified before therapy initiation and had a median OS and TFS of 14.7 (95% confidence interval [CI], 11.3-18.1) and 2.5 (95% CI, 1.5-3.6) years. Patient with copresence of 11q- and deletion 17p had a markedly worse prognosis, with median OS of 4.9 versus 14.7 years (P < .001). Most treated patients (33 of 52) received fludarabine with or without rituximab (FR). Patients treated with FR had a median OS of 12.8 years (standard error, 1.0), which was not statistically different from those treated with alkylator-containing therapy (P = .35). CONCLUSION Although median TFS of 11q- patients in this cohort was short at 2.5 years, OS remains long at 14.7 years, even when most patients received initial treatment without alkylators.
Collapse
Affiliation(s)
- Jennifer Goy
- Leukemia/Bone Marrow Transplant Program of BC, British Columbia Cancer Agency, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Tanya L Gillan
- Pathology and Laboratory Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Helene Bruyere
- Pathology and Laboratory Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J T Huang
- Leukemia/Bone Marrow Transplant Program of BC, British Columbia Cancer Agency, University of British Columbia, Vancouver, British Columbia, Canada; Pathology and Laboratory Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Monica Hrynchak
- Molecular Cytogenetic Laboratory, Royal Columbian Hospital, New Westminster, British Columbia, Canada
| | - Aly Karsan
- Cancer Genetics Laboratory, Pathology and Laboratory Medicine, British Columbia Cancer Agency, University of British Columbia, Vancouver, British Columbia, Canada
| | - Khaled Ramadan
- Division of Hematology, St Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph Connors
- Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Cynthia L Toze
- Leukemia/Bone Marrow Transplant Program of BC, British Columbia Cancer Agency, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alina S Gerrie
- Leukemia/Bone Marrow Transplant Program of BC, British Columbia Cancer Agency, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Appe AJ, Aggerholm A, Hansen MC, Ebbesen LH, Hokland P, Bentzen HHN, Nyvold CG. Differential expression levels and methylation status of ROBO1 in mantle cell lymphoma and chronic lymphocytic leukaemia. Int J Lab Hematol 2017; 39:e70-e73. [PMID: 28004534 DOI: 10.1111/ijlh.12615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
MESH Headings
- DNA Methylation
- DNA, Neoplasm/metabolism
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Mantle-Cell/metabolism
- Lymphoma, Mantle-Cell/pathology
- Male
- Neoplasm Proteins/biosynthesis
- Nerve Tissue Proteins/biosynthesis
- Receptors, Immunologic/biosynthesis
- Roundabout Proteins
Collapse
Affiliation(s)
- A J Appe
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - A Aggerholm
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - M C Hansen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - L H Ebbesen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - P Hokland
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - H H N Bentzen
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - C G Nyvold
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
16
|
García-Santisteban I, Arregi I, Alonso-Mariño M, Urbaneja MA, Garcia-Vallejo JJ, Bañuelos S, Rodríguez JA. A cellular reporter to evaluate CRM1 nuclear export activity: functional analysis of the cancer-related mutant E571K. Cell Mol Life Sci 2016; 73:4685-4699. [PMID: 27312238 PMCID: PMC11108298 DOI: 10.1007/s00018-016-2292-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/10/2016] [Accepted: 06/07/2016] [Indexed: 01/02/2023]
Abstract
The exportin CRM1 binds nuclear export signals (NESs), and mediates active transport of NES-bearing proteins from the nucleus to the cytoplasm. Structural and biochemical analyses have uncovered the molecular mechanisms underlying CRM1/NES interaction. CRM1 binds NESs through a hydrophobic cleft, whose open or closed conformation facilitates NES binding and release. Several cofactors allosterically modulate the conformation of the NES-binding cleft through intramolecular interactions involving an acidic loop and a C-terminal helix in CRM1. This current model of CRM1-mediated nuclear export has not yet been evaluated in a cellular setting. Here, we describe SRV100, a cellular reporter to interrogate CRM1 nuclear export activity. Using this novel tool, we provide evidence further validating the model of NES binding and release by CRM1. Furthermore, using both SRV100-based cellular assays and in vitro biochemical analyses, we investigate the functional consequences of a recurrent cancer-related mutation, which targets a residue near CRM1 NES-binding cleft. Our data indicate that this mutation does not necessarily abrogate the nuclear export activity of CRM1, but may increase its affinity for NES sequences bearing a more negatively charged C-terminal end.
Collapse
Affiliation(s)
- Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Division of Cell Biology I, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Igor Arregi
- Department of Biochemistry and Molecular Biology, Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - Marián Alonso-Mariño
- Department of Biochemistry and Molecular Biology, Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - María A Urbaneja
- Department of Biochemistry and Molecular Biology, Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sonia Bañuelos
- Department of Biochemistry and Molecular Biology, Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
| | - Jose A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
17
|
Yahav G, Hirshberg A, Salomon O, Amariglio N, Trakhtenbrot L, Fixler D. Fluorescence lifetime imaging of DAPI-stained nuclei as a novel diagnostic tool for the detection and classification of B-cell chronic lymphocytic leukemia. Cytometry A 2016; 89:644-52. [DOI: 10.1002/cyto.a.22890] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/21/2016] [Accepted: 05/18/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Gilad Yahav
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials; Bar Ilan University; Ramat Gan Israel
| | - Abraham Hirshberg
- Department of Oral Pathology and Oral Medicine, Maurice and Gabriela Goldschleger School of Dental Medicine; Tel Aviv University; Tel Aviv Israel
| | - Ophira Salomon
- Thrombosis Unit, Sheba Medical Center and Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | | | | | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials; Bar Ilan University; Ramat Gan Israel
| |
Collapse
|
18
|
Valdés-Mas R, Gutiérrez-Abril J, Puente XS, López-Otín C. Chronic lymphocytic leukemia: looking into the dark side of the genome. Cell Death Differ 2016; 23:7-9. [PMID: 26611460 PMCID: PMC4815973 DOI: 10.1038/cdd.2015.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- R Valdés-Mas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - J Gutiérrez-Abril
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - X S Puente
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - C López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|