1
|
Pu J, Liu T, Wang X, Sharma A, Schmidt-Wolf IGH, Jiang L, Hou J. Exploring the role of histone deacetylase and histone deacetylase inhibitors in the context of multiple myeloma: mechanisms, therapeutic implications, and future perspectives. Exp Hematol Oncol 2024; 13:45. [PMID: 38654286 DOI: 10.1186/s40164-024-00507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Histone deacetylase inhibitors (HDACis) are a significant category of pharmaceuticals that have developed in the past two decades to treat multiple myeloma. Four drugs in this category have received approval from the U.S. Food and Drug Administration (FDA) for use: Panobinonstat (though canceled by the FDA in 2022), Vorinostat, Belinostat and Romidepsin. The efficacy of this group of drugs is attributed to the disruption of many processes involved in tumor growth through the inhibition of histone deacetylase, and this mode of action leads to significant anti-multiple myeloma (MM) activity. In MM, inhibition of histone deacetylase has many downstream consequences, including suppression of NF-κB signaling and HSP90, upregulation of cell cycle regulators (p21, p53), and downregulation of antiapoptotic proteins including Bcl-2. Furthermore, HDACis have a variety of direct and indirect oxidative effects on cellular DNA. HDAC inhibitors enhance normal immune function, thereby decreasing the proliferation of malignant plasma cells and promoting autophagy. The various biological effects of inhibiting histone deacetylase have a combined or additional impact when used alongside other chemotherapeutic and targeted drugs for multiple myeloma. This helps to decrease resistance to treatment. Combination treatment regimens that include HDACis have become an essential part of the therapy for multiple myeloma. These regimens incorporate drugs from other important classes of anti-myeloma agents, such as immunomodulatory drugs (IMiDs), conventional chemotherapy, monoclonal antibodies, and proteasome inhibitors. This review provides a comprehensive evaluation of the clinical efficacy and safety data pertaining to the currently approved histone deacetylase inhibitors, as well as an explanation of the crucial function of histone deacetylase in multiple myeloma and the characteristics of the different histone deacetylase inhibitors. Moreover, it provides a concise overview of the most recent developments in the use of histone deacetylase inhibitors for treating multiple myeloma, as well as potential future uses in treatment.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Xuzhen Wang
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, Jiangsu, China.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
2
|
Ferro A, Pantazaka E, Athanassopoulos CM, Cuendet M. Histone deacetylase-based dual targeted inhibition in multiple myeloma. Med Res Rev 2023; 43:2177-2236. [PMID: 37191917 DOI: 10.1002/med.21972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/08/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023]
Abstract
Despite enormous advances in terms of therapeutic strategies, multiple myeloma (MM) still remains an incurable disease with MM patients often becoming resistant to standard treatments. To date, multiple combined and targeted therapies have proven to be more beneficial compared to monotherapy approaches, leading to a decrease in drug resistance and an improvement in median overall survival in patients. Moreover, recent breakthroughs highlighted the relevant role of histone deacetylases (HDACs) in cancer treatment, including MM. Thus, the simultaneous use of HDAC inhibitors with other conventional regimens, such as proteasome inhibitors, is of interest in the field. In this review, we provide a general overview of HDAC-based combination treatments in MM, through a critical presentation of publications from the past few decades related to in vitro and in vivo studies, as well as clinical trials. Furthermore, we discuss the recent introduction of dual-inhibitor entities that could have the same beneficial effects as drug combinations with the advantage of having two or more pharmacophores in one molecular structure. These findings could represent a starting-point for both reducing therapeutic doses and lowering the risk of developing drug resistance.
Collapse
Affiliation(s)
- Angelica Ferro
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Evangelia Pantazaka
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras, Greece
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology, and Development, Department of Biology, University of Patras, Patras, Greece
| | | | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Holmberg LA, Maloney DG, Connelly-Smith L. Bortezomib and Vorinostat Therapy as Maintenance Therapy Post-Autologous Transplant for Non-Hodgkin's Lymphoma Using R-BEAM or BEAM Transplant Conditioning Regimen. Acta Haematol 2023; 147:300-309. [PMID: 37708877 DOI: 10.1159/000533944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION The success of autologous stem cell transplantation (ASCT) for treating non-Hodgkin's lymphoma (NHL) is limited by its high relapse rates. To reduce the risk of relapse, additional maintenance therapy can be added post-transplant. In a non-transplant setting at the time of initiation of this study, both bortezomib and vorinostat had been studied alone or in combination for some NHL histology and showed some clinical activity. At our center, this combination therapy post-transplant for multiple myeloma showed acceptable toxicity. Therefore, it seemed reasonable to study this combination therapy post-ASCT for NHL. METHODS NHL patients underwent conditioning for ASCT with rituximab, carmustine, etoposide, cytarabine, melphalan/carmustine, etoposide, cytarabine, melphalan. After recovery from the acute transplant-related toxicity, combination therapy with IV bortezomib and oral vorinostat (BV) was started and was given for a total of 12 (28-day) cycles. RESULTS Nineteen patients received BV post-ASCT. The most common toxicities were hematologic, gastrointestinal, metabolic, fatigue, and peripheral neuropathy. With a median follow-up of 10.3 years, 11 patients (58%) are alive without disease progression and 12 patients (63%) are alive. CONCLUSIONS BV can be given post-ASCT for NHL and produces excellent disease-free and overall survival rates.
Collapse
Affiliation(s)
- Leona A Holmberg
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - David G Maloney
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Laura Connelly-Smith
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Feng P, Zhang J, Zhang J, Liu X, Pan L, Chen D, Ji M, Lu F, Li P, Li G, Sun T, Li J, Ye J, Ji C. Deacetylation of YAP1 Promotes the Resistance to Chemo- and Targeted Therapy in FLT3-ITD+ AML Cells. Front Cell Dev Biol 2022; 10:842214. [PMID: 35656547 PMCID: PMC9152322 DOI: 10.3389/fcell.2022.842214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
The FLT3-ITD mutation occurs in about 30% of acute myeloid leukemia (AML) and is associated with poor prognosis. However, FLT3 inhibitors are only partially effective and prone to acquired resistance. Here, we identified Yes-associated protein 1 (YAP1) as a tumor suppressor in FLT3-ITD+ AML. YAP1 inactivation conferred FLT3-ITD+ AML cell resistance to chemo- and targeted therapy. Mass spectrometric assay revealed that DNA damage repair gene poly (ADP-ribose) polymerase 1 (PARP1) might be the downstream of YAP1, and the pro-proliferative effect by YAP1 knockdown was partly reversed via PARP1 inhibitor. Importantly, histone deacetylase 10 (HDAC10) contributed to decreased YAP1 acetylation levels through histone H3 lysine 27 (H3K27) acetylation, leading to the reduced nuclear accumulation of YAP1. Selective HDAC10 inhibitor chidamide or HDAC10 knockdown activated YAP1, enhanced DNA damage, and significantly attenuated FLT3-ITD+ AML cell resistance. In addition, combination chidamide with FLT3 inhibitors or chemotherapy agents synergistically inhibited growth and increased apoptosis of FLT3-ITD+ AML cell lines and acquired resistant cells from the relapse FLT3-ITD+ AML patients. These findings demonstrate that the HDAC10-YAP1-PARP1 axis maintains FLT3-ITD+ AML cells and targeting this axis might improve clinical outcomes in FLT3-ITD+ AML patients.
Collapse
Affiliation(s)
- Panpan Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingru Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaomin Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lina Pan
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dawei Chen
- Laboratory of Medical Chemistry, GIGA-Stem Cells, Faculty of Medicine, University of Liege, CHU, Liege, Belgium
| | - Min Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Chunyan Ji, ; Jingjing Ye,
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Chunyan Ji, ; Jingjing Ye,
| |
Collapse
|
5
|
Chidamide augment sorafenib-derived anti-tumor activities in human osteosarcoma cells lines and xenograft mouse model. Med Oncol 2022; 39:87. [PMID: 35478053 DOI: 10.1007/s12032-022-01684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 10/18/2022]
Abstract
Previous studies have showed promising but short-lived activity of sorafenib in osteosarcoma treatments. Researches have suggested ameliorated sensitivity to standard dose of conventional cancer therapies in combination with histone deacetylase inhibitors (HDACis) through various mechanisms. Herein, for the first time, we exploited the synergism of combination therapies with sorafenib and chidamide, a member of HDACis, in the control of OS using human OS cell lines and OS xenograft mouse model and discussed interactive mechanisms between the two drugs. The combination therapy exerted a strong synergism in the inhibition of OS cell proliferation, meanwhile prominently induced cell apoptosis and cell cycle arrest in G0/G1 phase in OS cells with increased expression of MCL-1, decreased expression of caspase-3 and P21, along with diminished level of the overlapped protein P-ERK1/2. Furthermore, oral administration of the combined treatment led to a more optical therapeutic outcome, including lower degrees of tumoral cell proliferation, greater extent of apoptosis, along with induction of cell cycle arrest in tumor tissues, while exhibiting minimal toxicity. This study shows that the combination of sorafenib and chidamide can combat OS in a synergistic fashion and prompts the promising development of innovative combined therapeutic strategies for OS.
Collapse
|
6
|
Octave M, Pirotton L, Ginion A, Robaux V, Lepropre S, Ambroise J, Bouzin C, Guigas B, Giera M, Foretz M, Bertrand L, Beauloye C, Horman S. Acetyl-CoA Carboxylase Inhibitor CP640.186 Increases Tubulin Acetylation and Impairs Thrombin-Induced Platelet Aggregation. Int J Mol Sci 2021; 22:ijms222313129. [PMID: 34884932 PMCID: PMC8658010 DOI: 10.3390/ijms222313129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Acetyl-CoA carboxylase (ACC) is the first enzyme regulating de novo lipid synthesis via the carboxylation of acetyl-CoA into malonyl-CoA. The inhibition of its activity decreases lipogenesis and, in parallel, increases the acetyl-CoA content, which serves as a substrate for protein acetylation. Several findings support a role for acetylation signaling in coordinating signaling systems that drive platelet cytoskeletal changes and aggregation. Therefore, we investigated the impact of ACC inhibition on tubulin acetylation and platelet functions. Human platelets were incubated 2 h with CP640.186, a pharmacological ACC inhibitor, prior to thrombin stimulation. We have herein demonstrated that CP640.186 treatment does not affect overall platelet lipid content, yet it is associated with increased tubulin acetylation levels, both at the basal state and after thrombin stimulation. This resulted in impaired platelet aggregation. Similar results were obtained using human platelets that were pretreated with tubacin, an inhibitor of tubulin deacetylase HDAC6. In addition, both ACC and HDAC6 inhibitions block key platelet cytoskeleton signaling events, including Rac1 GTPase activation and the phosphorylation of its downstream effector, p21-activated kinase 2 (PAK2). However, neither CP640.186 nor tubacin affects thrombin-induced actin cytoskeleton remodeling, while ACC inhibition results in decreased thrombin-induced reactive oxygen species (ROS) production and extracellular signal-regulated kinase (ERK) phosphorylation. We conclude that when using washed human platelets, ACC inhibition limits tubulin deacetylation upon thrombin stimulation, which in turn impairs platelet aggregation. The mechanism involves a downregulation of the Rac1/PAK2 pathway, being independent of actin cytoskeleton.
Collapse
Affiliation(s)
- Marie Octave
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.O.); (L.P.); (A.G.); (V.R.); (S.L.); (L.B.); (C.B.)
| | - Laurence Pirotton
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.O.); (L.P.); (A.G.); (V.R.); (S.L.); (L.B.); (C.B.)
| | - Audrey Ginion
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.O.); (L.P.); (A.G.); (V.R.); (S.L.); (L.B.); (C.B.)
| | - Valentine Robaux
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.O.); (L.P.); (A.G.); (V.R.); (S.L.); (L.B.); (C.B.)
| | - Sophie Lepropre
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.O.); (L.P.); (A.G.); (V.R.); (S.L.); (L.B.); (C.B.)
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Caroline Bouzin
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Martin Giera
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Marc Foretz
- CNRS, INSERM, Institut Cochin, Université de Paris, F-75014 Paris, France;
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.O.); (L.P.); (A.G.); (V.R.); (S.L.); (L.B.); (C.B.)
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.O.); (L.P.); (A.G.); (V.R.); (S.L.); (L.B.); (C.B.)
- Division of Cardiology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium; (M.O.); (L.P.); (A.G.); (V.R.); (S.L.); (L.B.); (C.B.)
- Correspondence: ; Tel.: +32-2-764-55-66
| |
Collapse
|
7
|
van Tilburg CM, Milde T, Witt R, Ecker J, Hielscher T, Seitz A, Schenk JP, Buhl JL, Riehl D, Frühwald MC, Pekrun A, Rossig C, Wieland R, Flotho C, Kordes U, Gruhn B, Simon T, Linderkamp C, Sahm F, Taylor L, Freitag A, Burhenne J, Foerster KI, Meid AD, Pfister SM, Karapanagiotou-Schenkel I, Witt O. Phase I/II intra-patient dose escalation study of vorinostat in children with relapsed solid tumor, lymphoma, or leukemia. Clin Epigenetics 2019; 11:188. [PMID: 31823832 PMCID: PMC6902473 DOI: 10.1186/s13148-019-0775-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/03/2019] [Indexed: 12/26/2022] Open
Abstract
Background Until today, adult and pediatric clinical trials investigating single-agent or combinatorial HDAC inhibitors including vorinostat in solid tumors have largely failed to demonstrate efficacy. These results may in part be explained by data from preclinical models showing significant activity only at higher concentrations compared to those achieved with current dosing regimens. In the current pediatric trial, we applied an intra-patient dose escalation design. The purpose of this trial was to determine a safe dose recommendation (SDR) of single-agent vorinostat for intra-patient dose escalation, pharmacokinetic analyses (PK), and activity evaluation in children (3–18 years) with relapsed or therapy-refractory malignancies. Results A phase I intra-patient dose (de)escalation was performed until individual maximum tolerated dose (MTD). The starting dose was 180 mg/m2/day with weekly dose escalations of 50 mg/m2 until DLT/maximum dose. After MTD determination, patients seamlessly continued in phase II with disease assessments every 3 months. PK and plasma cytokine profiles were determined. Fifty of 52 patients received treatment. n = 27/50 (54%) completed the intra-patient (de)escalation and entered phase II. An SDR of 130 mg/m2/day was determined (maximum, 580 mg/m2/day). n = 46/50 (92%) patients experienced treatment-related AEs which were mostly reversible and included thrombocytopenia, fatigue, nausea, diarrhea, anemia, and vomiting. n = 6/50 (12%) had treatment-related SAEs. No treatment-related deaths occurred. Higher dose levels resulted in higher Cmax. Five patients achieved prolonged disease control (> 12 months) and showed a higher Cmax (> 270 ng/mL) and MTDs. Best overall response (combining PR and SD, no CR observed) rate in phase II was 6/27 (22%) with a median PFS and OS of 5.3 and 22.4 months. Low levels of baseline cytokine expression were significantly correlated with favorable outcome. Conclusion An SDR of 130 mg/m2/day for individual dose escalation was determined. Higher drug exposure was associated with responses and long-term disease stabilization with manageable toxicity. Patients with low expression of plasma cytokine levels at baseline were able to tolerate higher doses of vorinostat and benefited from treatment. Baseline cytokine profile is a promising potential predictive biomarker. Trial registration ClinicalTrials.gov, NCT01422499. Registered 24 August 2011,
Collapse
Affiliation(s)
- Cornelis M van Tilburg
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Till Milde
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ruth Witt
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jonas Ecker
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Angelika Seitz
- Division of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jens-Peter Schenk
- Division of Pediatric Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Juliane L Buhl
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Dennis Riehl
- DKTK Immune Monitoring Unit, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael C Frühwald
- Swabian Children's Cancer Center, University Children's Hospital Augsburg, Augsburg, Germany
| | | | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Regina Wieland
- Department of Pediatric Oncology and Hematology, Essen University Hospital, Essen, Germany
| | - Christian Flotho
- Division of Pediatric Oncology and Hematology, Freiburg University Hospital, Freiburg, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Eppendorf, Hamburg, Germany
| | - Bernd Gruhn
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Thorsten Simon
- Department of Pediatric Oncology and Hematology, Cologne University Hospital, Cologne, Germany
| | - Christin Linderkamp
- Department of Pediatric Oncology and Hematology, Hannover University Hospital, Hanover, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lenka Taylor
- Pharmacy Department, Heidelberg University Hospital, Heidelberg, Germany
| | - Angelika Freitag
- NCT Trial Center, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kathrin I Foerster
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas D Meid
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | | | - Olaf Witt
- KiTZ Clinical Trial Unit, Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany. .,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany. .,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
8
|
Holmberg LA, Green D, Libby E, Becker PS. Bortezomib and Vorinostat Therapy as Maintenance Therapy after Autologous Transplant for Multiple Myeloma. Acta Haematol 2019; 143:146-154. [PMID: 31434076 DOI: 10.1159/000501298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND In multiple myeloma (MM), relapse is a frequent complication after autologous hematopoietic stem cell transplant (ASCT). To reduce the risk of relapse, additional therapy has been added post-ASCT. In a nontransplant relapse setting, the combination of intravenous bortezomib and oral vorinostat (BV) was studied and showed efficacy. Therefore, it was reasonable to study this combination therapy post-ASCT. PATIENTS AND METHODS We report on BV given post-ASCT. All 30 patients underwent conditioning for ASCT with high-dose melphalan. After recovery from the acute transplant-related toxicity, BV therapy was started and given for a total of 12 (28-day) cycles. RESULTS The most common toxicities were hematological, gastrointestinal (diarrhea and nausea), fatigue, and peripheral neuropathy. The median follow-up for BV patients is 7.8 (range: 6.12-9.03) years. After BV therapy, 18 patients (60%) are alive, and 9 (30%) are alive without disease progression. CONCLUSIONS BV can be given post-ASCT with an acceptable toxicity profile and produces reasonable disease-free and overall survival rates. A randomized study comparing the BV regimen to single-agent lenalidomide or bortezomib is needed.
Collapse
Affiliation(s)
- Leona A Holmberg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA,
- Department of Medicine, University of Washington, Seattle, Washington, USA,
| | - Damian Green
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Edward Libby
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - P S Becker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Manzotti G, Ciarrocchi A, Sancisi V. Inhibition of BET Proteins and Histone Deacetylase (HDACs): Crossing Roads in Cancer Therapy. Cancers (Basel) 2019; 11:cancers11030304. [PMID: 30841549 PMCID: PMC6468908 DOI: 10.3390/cancers11030304] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Histone DeACetylases (HDACs) are enzymes that remove acetyl groups from histones and other proteins, regulating the expression of target genes. Pharmacological inhibition of these enzymes re-shapes chromatin acetylation status, confusing boundaries between transcriptionally active and quiescent chromatin. This results in reinducing expression of silent genes while repressing highly transcribed genes. Bromodomain and Extraterminal domain (BET) proteins are readers of acetylated chromatin status and accumulate on transcriptionally active regulatory elements where they serve as scaffold for the building of transcription-promoting complexes. The expression of many well-known oncogenes relies on BET proteins function, indicating BET inhibition as a strategy to counteract their activity. BETi and HDACi share many common targets and affect similar cellular processes to the point that combined inhibition of both these classes of proteins is regarded as a strategy to improve the effectiveness of these drugs in cancer. In this work, we aim to discuss the molecular basis of the interplay between HDAC and BET proteins, pointing at chromatin acetylation as a crucial node of their functional interaction. We will also describe the state of the art of their dual inhibition in cancer therapy. Finally, starting from their mechanism of action we will provide a speculative perspective on how these drugs may be employed in combination with standard therapies to improve effectiveness and/or overcome resistance.
Collapse
Affiliation(s)
- Gloria Manzotti
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| |
Collapse
|
10
|
Messaoudi K, Ali A, Ishaq R, Palazzo A, Sliwa D, Bluteau O, Souquère S, Muller D, Diop KM, Rameau P, Lapierre V, Marolleau JP, Matthias P, Godin I, Pierron G, Thomas SG, Watson SP, Droin N, Vainchenker W, Plo I, Raslova H, Debili N. Critical role of the HDAC6-cortactin axis in human megakaryocyte maturation leading to a proplatelet-formation defect. Nat Commun 2017; 8:1786. [PMID: 29176689 PMCID: PMC5702605 DOI: 10.1038/s41467-017-01690-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Thrombocytopenia is a major side effect of a new class of anticancer agents that target histone deacetylase (HDAC). Their mechanism is poorly understood. Here, we show that HDAC6 inhibition and genetic knockdown lead to a strong decrease in human proplatelet formation (PPF). Unexpectedly, HDAC6 inhibition-induced tubulin hyperacetylation has no effect on PPF. The PPF decrease induced by HDAC6 inhibition is related to cortactin (CTTN) hyperacetylation associated with actin disorganization inducing important changes in the distribution of megakaryocyte (MK) organelles. CTTN silencing in human MKs phenocopies HDAC6 inactivation and knockdown leads to a strong PPF defect. This is rescued by forced expression of a deacetylated CTTN mimetic. Unexpectedly, unlike human-derived MKs, HDAC6 and CTTN are shown to be dispensable for mouse PPF in vitro and platelet production in vivo. Our results highlight an unexpected function of HDAC6–CTTN axis as a positive regulator of human but not mouse MK maturation. Histone deacetylase (HDAC) inhibitors, a class of cancer therapeutics, cause thrombocytopenia via an unknown mechanism. Here, the authors show that HDAC6 inhibition impairs proplatelet formation in human megakaryocytes, and show that this is linked to hyperacetylation of the actin-binding protein cortactin.
Collapse
Affiliation(s)
- Kahia Messaoudi
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France.,Paris7 Diderot University, 75013, Paris, France
| | - Ashfaq Ali
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France.,Paris7 Diderot University, 75013, Paris, France
| | - Rameez Ishaq
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France.,Paris7 Diderot University, 75013, Paris, France
| | - Alberta Palazzo
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France.,Paris7 Diderot University, 75013, Paris, France
| | - Dominika Sliwa
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France
| | - Olivier Bluteau
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France
| | - Sylvie Souquère
- CNRS-UMR-9196, Institut Gustave Roussy, 94805, Villejuif, France
| | - Delphine Muller
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France
| | - Khadija M Diop
- Genomic Platform, Institut Gustave Roussy, 94805, Villejuif, France
| | - Philippe Rameau
- Gustave Roussy, Integrated Biology Core Facility, 94805, Villejuif, France
| | | | - Jean-Pierre Marolleau
- Clinical Hematology and Cell Therapy Department, Amiens Hospital, UPJV University EA4666, 80054, Amiens, France
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4002, Basel, Switzerland
| | - Isabelle Godin
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France
| | - Gérard Pierron
- CNRS-UMR-9196, Institut Gustave Roussy, 94805, Villejuif, France
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Stephen P Watson
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Nathalie Droin
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France.,Genomic Platform, Institut Gustave Roussy, 94805, Villejuif, France
| | - William Vainchenker
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France
| | - Isabelle Plo
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France
| | - Hana Raslova
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France.,Paris-Saclay University, UMR 1170, 94805, Villejuif, France.,Gustave Roussy, 94805, Villejuif, France
| | - Najet Debili
- Institut National de la Santé et de la Recherche Médicale, UMR 1170, Equipe labellisée par la Ligue Nationale contre le Cancer, 94805, Villejuif, France. .,Paris-Saclay University, UMR 1170, 94805, Villejuif, France. .,Gustave Roussy, 94805, Villejuif, France.
| |
Collapse
|
11
|
Li Y, Wang Y, Zhou Y, Li J, Chen K, Zhang L, Deng M, Deng S, Li P, Xu B. Cooperative effect of chidamide and chemotherapeutic drugs induce apoptosis by DNA damage accumulation and repair defects in acute myeloid leukemia stem and progenitor cells. Clin Epigenetics 2017; 9:83. [PMID: 28814980 PMCID: PMC5556349 DOI: 10.1186/s13148-017-0377-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Many conventional chemotherapeutic drugs are known to be involved in DNA damage, thus ultimately leading to apoptosis of leukemic cells. However, they fail to completely eliminate leukemia stem cells (LSCs) due to their higher DNA repair capacity of cancer stem cells than that of bulk cancer cells, which becomes the root of drug resistance and leukemia recurrence. A new strategy to eliminate LSCs in acute myeloid leukemia (AML) is therefore urgently needed. RESULTS We report that a low-dose chidamide, a novel orally active benzamide-type histone deacetylase (HDAC) inhibitor, which selectively targets HDACs 1, 2, 3, and 10, could enhance the cytotoxicity of DNA-damaging agents (daunorubicin, idarubicin, and cytarabine) in CD34+CD38- KG1α cells, CD34+CD38- Kasumi cells, and primary refractory or relapsed AML CD34+ cells, reflected by the inhibition of cell proliferation, induction of apoptosis, and increase of cell cycle arrest in vitro. Mechanistically, these events were associated with DNA damage accumulation and repair defects. Co-treatment with chidamide and the DNA-damaging agent IDA gave rise to the production of γH2A.X and inhibited posttranslationally but not transcriptionally the repair gene of ATM, BRCA1, and checkpoint kinase 1 (CHK1) and 2 (CHK2) phosphorylation. Finally, the combination of chidamide and IDA initiated caspase-3 and PARP cleavage, but not caspase-8 and caspase-9, and ultimately induced CD34+CD38- KG1α cell apoptosis. Further analysis of AML patients' clinical characteristics revealed that the ex vivo efficacy of chidamide in combination with IDA in primary CD34+ samples was significantly correlated to peripheral blood WBC counts at diagnosis, while LDH levels and karyotype status had no effect, indicating that the combination regimen of chidamide and IDA could rapidly diminish tumor burden in patients with R/R AML. CONCLUSIONS These findings provide preclinical evidence for low-dose chidamide in combination with chemotherapeutic agents in treating recurrent/resistant AML as an alternative salvage regimen, especially those possessing stem and progenitor cells.
Collapse
Affiliation(s)
- Yin Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - Yan Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - Yong Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 People's Republic of China
| | - Jie Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - Kai Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - Leisi Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 People's Republic of China
| | - Suqi Deng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - Peng Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 People's Republic of China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 People's Republic of China
| |
Collapse
|
12
|
Burhenne J, Liu L, Heilig CE, Meid AD, Leisen M, Schmitt T, Kasper B, Haefeli WE, Mikus G, Egerer G. Intracellular vorinostat accumulation and its relationship to histone deacetylase activity in soft tissue sarcoma patients. Cancer Chemother Pharmacol 2017; 80:433-439. [DOI: 10.1007/s00280-017-3357-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/02/2017] [Indexed: 10/19/2022]
|