1
|
Tolomeo D, Agostini A, Solimando AG, Cunsolo CL, Cimarosto L, Palumbo O, Palumbo P, Carella M, Hernández-Sánchez M, Hernández-Rivas JM, Storlazzi CT. A t(4;13)(q21;q14) translocation in B-cell chronic lymphocytic leukemia causing concomitant homozygous DLEU2/miR15a/miR16-1 and heterozygous ARHGAP24 deletions. Cancer Genet 2023; 272-273:16-22. [PMID: 36641997 DOI: 10.1016/j.cancergen.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/06/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
13q14 deletion is the most recurrent chromosomal aberration reported in B-CLL, having a favorable prognostic significance when occurring as the sole cytogenetic alteration. However, its clinical outcome is also related to the deletion size and number of cells with the del(13)(q14) deletion. In 10% of cases, 13q14 deletion arises following a translocation event with multiple partner chromosomes, whose oncogenic impact has not been investigated so far due to the assumption of a possible role as a passenger mutation. Here, we describe a t(4;13)(q21;q14) translocation occurring in a B-CLL case from the diagnosis to spontaneous regression. FISH and SNP-array analyses revealed a heterozygous deletion at 4q21, leading to the loss of the Rho GTPase Activating Protein 24 (ARHGAP24) tumor suppressor gene, down-regulated in the patient RNA, in addition to the homozygous deletion at 13q14 involving DLEU2/miR15a/miR16-1 genes. Interestingly, targeted Next Generation Sequencing analysis of 54 genes related to B-CLL indicated no additional somatic mutation in the patient, underlining the relevance of this t(4;13)(q21;q14) aberration in the leukemogenic process. In all tested RNA samples, RT-qPCR experiments assessed the downregulation of the PCNA, MKI67, and TOP2A proliferation factor genes, and the BCL2 anti-apoptotic gene as well as the up-regulation of TP53 and CDKN1A tumor suppressors, indicating a low proliferation potential of the cells harboring the aberration. In addition, RNA-seq analyses identified four chimeric transcripts (ATG4B::PTMA, OAZ1::PTMA, ZFP36::PTMA, and PIM3::BRD1), two of which (ATG4B::PTMA and ZFP36::PTMA) failed to be detected at the remission, suggesting a possible transcriptional remodeling during the disease course. Overall, our results indicate a favorable prognostic impact of the described chromosomal aberration, as it arises a permissive molecular landscape to the spontaneous B-CLL regression in the patient, highlighting ARHGAP24 as a potentially relevant concurrent alteration to the 13q14 deletion in delineating B-CLL disease evolution.
Collapse
Affiliation(s)
- Doron Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Agostini
- Department of Precision and Regenerative Medicine and Jonic area, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Precision and Regenerative Medicine and Jonic area, University of Bari Aldo Moro, Bari, Italy
| | | | | | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Italy
| | - Pietro Palumbo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Italy
| | - Massimo Carella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Italy
| | - Maria Hernández-Sánchez
- Universidad de Salamanca, IBSAL, Centro de Investigación del Cáncer, IBMCC-CSIC, Salamanca, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Clelia Tiziana Storlazzi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
2
|
Sahajpal NS, Mondal AK, Tvrdik T, Hauenstein J, Shi H, Deeb KK, Saxe D, Hastie AR, Chaubey A, Savage NM, Kota V, Kolhe R. Clinical Validation and Diagnostic Utility of Optical Genome Mapping for Enhanced Cytogenomic Analysis of Hematological Neoplasms. J Mol Diagn 2022; 24:1279-1291. [PMID: 36265723 DOI: 10.1016/j.jmoldx.2022.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022] Open
Abstract
The current standard-of-care cytogenetic techniques for the analysis of hematological malignancies include karyotyping, fluorescence in situ hybridization, and chromosomal microarray, which are labor intensive and time and cost prohibitive, and they often do not reveal the genetic complexity of the tumor, demonstrating the need for alternative technology for better characterization of these tumors. Herein, we report the results from our clinical validation study and demonstrate the utility of optical genome mapping (OGM), evaluated using 92 sample runs (including replicates) that included 69 well-characterized unique samples (59 hematological neoplasms and 10 controls). The technical performance (quality control metrics) resulted in 100% first-pass rate, with analytical performance (concordance) showing a sensitivity of 98.7%, a specificity of 100%, and an accuracy of 99.2%. OGM demonstrated robust technical, analytical performance, and interrun, intrarun, and interinstrument reproducibility. The limit of detection was determined to be at 5% allele fraction for aneuploidy, translocation, interstitial deletion, and duplication. OGM identified several additional structural variations, revealing the genomic architecture in these neoplasms that provides an opportunity for better tumor classification, prognostication, risk stratification, and therapy selection. Overall, OGM has outperformed the standard-of-care tests in this study and demonstrated its potential as a first-tier cytogenomic test for hematologic malignancies.
Collapse
Affiliation(s)
- Nikhil S Sahajpal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Ashis K Mondal
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Tatiana Tvrdik
- Department of Pathology, Emory University, Atlanta, Georgia
| | | | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Kristin K Deeb
- Department of Pathology, Emory University, Atlanta, Georgia
| | - Debra Saxe
- Department of Pathology, Emory University, Atlanta, Georgia
| | | | | | - Natasha M Savage
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia at Augusta University, Augusta, Georgia.
| |
Collapse
|
3
|
Fabris L, Juracek J, Calin G. Non-Coding RNAs as Cancer Hallmarks in Chronic Lymphocytic Leukemia. Int J Mol Sci 2020; 21:E6720. [PMID: 32937758 PMCID: PMC7554994 DOI: 10.3390/ijms21186720] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/23/2020] [Accepted: 09/10/2020] [Indexed: 01/02/2023] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) and their role in tumor onset and progression has revolutionized the way scientists and clinicians study cancers. This discovery opened new layers of complexity in understanding the fine-tuned regulation of cellular processes leading to cancer. NcRNAs represent a heterogeneous group of transcripts, ranging from a few base pairs to several kilobases, that are able to regulate gene networks and intracellular pathways by interacting with DNA, transcripts or proteins. Deregulation of ncRNAs impinge on several cellular responses and can play a major role in each single hallmark of cancer. This review will focus on the most important short and long non-coding RNAs in chronic lymphocytic leukemia (CLL), highlighting their implications as potential biomarkers and therapeutic targets as they relate to the well-established hallmarks of cancer. The key molecular events in the onset of CLL will be contextualized, taking into account the role of the "dark matter" of the genome.
Collapse
Affiliation(s)
- Linda Fabris
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jaroslav Juracek
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - George Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
4
|
Haider Z, Landfors M, Golovleva I, Erlanson M, Schmiegelow K, Flægstad T, Kanerva J, Norén-Nyström U, Hultdin M, Degerman S. DNA methylation and copy number variation profiling of T-cell lymphoblastic leukemia and lymphoma. Blood Cancer J 2020; 10:45. [PMID: 32345961 PMCID: PMC7188684 DOI: 10.1038/s41408-020-0310-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Despite having common overlapping immunophenotypic and morphological features, T-cell lymphoblastic leukemia (T-ALL) and lymphoma (T-LBL) have distinct clinical manifestations, which may represent separate diseases. We investigated and compared the epigenetic and genetic landscape of adult and pediatric T-ALL (n = 77) and T-LBL (n = 15) patient samples by high-resolution genome-wide DNA methylation and Copy Number Variation (CNV) BeadChip arrays. DNA methylation profiling identified the presence of CpG island methylator phenotype (CIMP) subgroups within both pediatric and adult T-LBL and T-ALL. An epigenetic signature of 128 differentially methylated CpG sites was identified, that clustered T-LBL and T-ALL separately. The most significant differentially methylated gene loci included the SGCE/PEG10 shared promoter region, previously implicated in lymphoid malignancies. CNV analysis confirmed overlapping recurrent aberrations between T-ALL and T-LBL, including 9p21.3 (CDKN2A/CDKN2B) deletions. A significantly higher frequency of chromosome 13q14.2 deletions was identified in T-LBL samples (36% in T-LBL vs. 0% in T-ALL). This deletion, encompassing the RB1, MIR15A and MIR16-1 gene loci, has been reported as a recurrent deletion in B-cell malignancies. Our study reveals epigenetic and genetic markers that can distinguish between T-LBL and T-ALL, and deepen the understanding of the biology underlying the diverse disease localization.
Collapse
Affiliation(s)
- Zahra Haider
- Department of Medical Biosciences, Umeå University, Umeå, Sweden.
| | - Mattias Landfors
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Irina Golovleva
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Martin Erlanson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, and Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Trond Flægstad
- Department of Pediatrics, University of Tromsø and University Hospital of North Norway, Tromsø, Norway
| | - Jukka Kanerva
- New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Magnus Hultdin
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Umeå University, Umeå, Sweden.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Zhou W, Goldin L, Wang M, McMaster ML, Jones K, Burdett L, Chanock SJ, Yeager M, Dean M, Caporaso N. Combined somatic mutation and copy number analysis in the survival of familial CLL. Br J Haematol 2018; 181:604-613. [PMID: 29687880 PMCID: PMC6010231 DOI: 10.1111/bjh.15239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/16/2018] [Indexed: 02/06/2023]
Abstract
Recurrent large-scale somatic copy number alterations (SCNAs), and somatic point mutations can be analysed to stratify patients with chronic lymphocytic leukaemia (CLL) into distinct prognostic groups. To investigate the relationship between SCNAs and somatic mutations, we performed whole-exome sequencing and single nucleotide polymorphism microarray analyses on 98 CLL patients from 40 families with a high burden of CLL. Overall, 69 somatic mutations in 29 CLL driver genes were detected among 45 subjects (46%), with the most frequently mutated genes being TP53 (8·2%), NOTCH1 (8·2%) and ATM (5·1%). Additionally, 142 SCNAs from 54 subjects (57%) were detected, including losses of chromosome 13q14 (28·9%), 11q (5·6%), 17p (2·1%), and gain of chromosome 12 (4·2%). We found that patients having both an adverse point mutation in a CLL driver gene and an unfavourable SCNA tended to have poorer survival (Hazard ratio [HR] = 3·17, 95% confidence interval [CI] = 0·97-10·35; P = 0·056) than patients having either a point mutation (HR = 1·34, 95%CI = 0·66-2·71; P = 0·42) or SCNAs (HR = 2·65, 95%CI = 0·77-9·13; P = 0·12). TP53 mutation carriers were associated with the poorest overall survival (HR = 4·39, 95%CI = 1·28-15·04; P = 0·018). Our study suggests that combining SCNA and mutational data could contribute to predicting outcome in familial CLL.
Collapse
Affiliation(s)
- Weiyin Zhou
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, 21702, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Lynn Goldin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Mingyi Wang
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, 21702, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Mary L. McMaster
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, 21702, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Laurie Burdett
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, 21702, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, 21702, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| |
Collapse
|