1
|
Tsukamoto T, Kinoshita M, Yamada K, Ito H, Yamaguchi T, Chinen Y, Mizutani S, Fujino T, Kobayashi T, Shimura Y, Inazawa J, Kuroda J. Imaging flow cytometry-based multiplex FISH for three IGH translocations in multiple myeloma. J Hum Genet 2023; 68:507-514. [PMID: 36882509 PMCID: PMC10290952 DOI: 10.1038/s10038-023-01136-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023]
Abstract
Three types of chromosomal translocations, t(4;14)(p16;q32), t(14;16)(q32;q23), and t(11;14)(q13;q32), are associated with prognosis and the decision making of therapeutic strategy for multiple myeloma (MM). In this study, we developed a new diagnostic modality of the multiplex FISH in immunophenotyped cells in suspension (Immunophenotyped-Suspension-Multiplex (ISM)-FISH). For the ISM-FISH, we first subject cells in suspension to the immunostaining by anti-CD138 antibody and, then, to the hybridization with four different FISH probes for genes of IGH, FGFR3, MAF, and CCND1 tagged by different fluorescence in suspension. Then, cells are analyzed by the imaging flow cytometry MI-1000 combined with the FISH spot counting tool. By this system of the ISM-FISH, we can simultaneously examine the three chromosomal translocations, i.e, t(4;14), t(14;16), and t(11;14), in CD138-positive tumor cells in more than 2.5 × 104 nucleated cells with the sensitivity at least up to 1%, possibly up to 0.1%. The experiments on bone marrow nucleated cells (BMNCs) from 70 patients with MM or monoclonal gammopathy of undetermined significance demonstrated the promising qualitative diagnostic ability in detecting t(11;14), t(4;14), and t(14;16) of our ISM-FISH, which was more sensitive compared with standard double-color (DC) FISH examining 200 interphase cells with its best sensitivity up to 1.0%. Moreover, the ISM-FISH showed a positive concordance of 96.6% and negative concordance of 98.8% with standard DC-FISH examining 1000 interphase cells. In conclusion, the ISM-FISH is a rapid and reliable diagnostic tool for the simultaneous examination of three critically important IGH translocations, which may promote risk-adapted individualized therapy in MM.
Collapse
Affiliation(s)
- Taku Tsukamoto
- Division of Hematology & Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | - Hodaka Ito
- General Laboratory, Bio Medical Laboratories, Inc., Tokyo, Japan
| | | | - Yoshiaki Chinen
- Division of Hematology & Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinsuke Mizutani
- Division of Hematology & Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Fujino
- Division of Hematology & Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsutomu Kobayashi
- Division of Hematology & Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Shimura
- Division of Hematology & Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Blood Transfusion and Cell Therapy, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
- Research Core Center, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Junya Kuroda
- Division of Hematology & Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
2
|
Oyama Y, Hamasaki M, Matsumoto S, Sato A, Tsujimura T, Nabeshima K. Short 57 kb CDKN2A FISH probe effectively detects short homozygous deletion of the 9p21 locus in malignant pleural mesothelioma. Oncol Lett 2021; 22:813. [PMID: 34671427 DOI: 10.3892/ol.2021.13074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/02/2021] [Indexed: 11/06/2022] Open
Abstract
Homozygous deletion (homo-d) of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene is frequently found in malignant pleural mesothelioma (MPM). Fluorescence in situ hybridization (FISH) is commonly used to detect chromosomal deletion, and sometimes reveals more frequent heterozygous deletion (hetero-d) compared with homo-d. In clinical practice, such CDKN2A FISH results belong to the 'borderline' homo-d rate, which makes it difficult to definitively diagnose MPM. Microdeletion, [<200 kilobase (kb)], can induce a 'pseudo' hetero-d signal in FISH assays with long probes owing to redundant probe reactivity. Thus, the present study hypothesized that shorter FISH probes can effectively detect the small deletion status of the CDKN2A gene and increase homo-d rate in MPM, which has high hetero-d and low homo-d status. The present study aimed to evaluate the effectiveness of a shorter CDKN2A FISH probe in diagnosing MPM. CDKN2A FISH with either a 222 kb long probe (L-probe) or a 57 kb short probe (S-probe) was performed in four MPM cases with high hetero-d and low homo-d patterns. Furthermore, immunohistochemistry for methylthioadenosine phosphorylase (MTAP) and quantitative (q)PCR analyses were performed to confirm the microdeletion of the 9p21 locus. The results demonstrated that all four MPM cases retained MTAP protein expression. CDKN2A FISH with L-probe revealed high hetero-d (cases 1-4; 73.3, 37.1, 59.2 and 64.8%, respectively) and low homo-d (cases 1-4; 12.1, 12.4, 25.4 and 22.2%, respectively). CDKN2A FISH with S-probe revealed high homo-d (cases 1-4; 96.8, 90.0, 87.5 and 82.6%, respectively), with low hetero-d (cases 1-4; 0.0, 1.2, 1.2 and 4.3%, respectively). qPCR analysis demonstrated no allele deletions of the MTAP gene and two-allele deletions of the CDKN2A gene in 3/4 cases. Taken together, these results suggest that the S-probe detects the short homo-d of the 9p21 locus more effectively than the L-probe in MPM. This can assist in solving diagnostic difficulties in cases involving high hetero-d with low homo-d.
Collapse
Affiliation(s)
- Yuzo Oyama
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Jonan-ku, Fukuoka 814-0180, Japan
| | - Makoto Hamasaki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shinji Matsumoto
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Jonan-ku, Fukuoka 814-0180, Japan
| | - Ayuko Sato
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8131, Japan
| | - Tohru Tsujimura
- Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8131, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
3
|
Nishiyama D, Chinen Y, Isa R, Fujibayashi Y, Kuwahara-Ota S, Yamaguchi J, Takimoto-Shimomura T, Matsumura-Kimoto Y, Tsukamoto T, Shimura Y, Kobayashi T, Horiike S, Taniwaki M, Handa H, Kuroda J. EWSR1 overexpression is a pro-oncogenic event in multiple myeloma. Int J Hematol 2020; 113:381-394. [PMID: 33095415 DOI: 10.1007/s12185-020-03027-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is cytogenetically, genetically and molecularly heterogenous even among subclones in one patient, therefore, it is essential to identify both frequent and patient-specific drivers of molecular abnormality. Following previous molecular investigations, we in this study investigated the expression patterns and function of the Ewing sarcoma breakpoint region 1 (EWSR1) gene in MM. The EWSR1 transcriptional level in CD138-positive myeloma cells was higher in 36.4% of monoclonal gammopathy of undetermined significance, in 67.4% of MM patients compared with normal plasma cells, and significantly higher in ten human myeloma-derived cell lines (HMCLs) examined. EWSR1 gene knockdown caused growth inhibition with an increase of apoptotic cells in NCI-H929 and KMS-12-BM cells. Gene expression profiling using microarray analysis suggested EWSR1 gene knockdown caused transcriptional modulation of several genes associated with processes such as cell proliferation, cell motility, cell metabolism, and gene expression. Of particular, EWSR1 gene knockdown caused upregulation of let-7c and downregulation of its known targets K-RAS and AKT. Finally, our analysis using community database suggested that high EWSR1 expression positively associates with poor prognosis and advanced disease stage in MM. These findings suggest that EWSR1 overexpression is a pro-oncogenic molecular abnormality that may participate in MM progression.
Collapse
Affiliation(s)
- Daichi Nishiyama
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yoshiaki Chinen
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.,Department of Hematology, Fukuchiyama City Hospital, Fukuchiyama, Japan
| | - Reiko Isa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuto Fujibayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Saeko Kuwahara-Ota
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Junko Yamaguchi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomoko Takimoto-Shimomura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yayoi Matsumura-Kimoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tsutomu Kobayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shigeo Horiike
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masafumi Taniwaki
- Center for Molecular Diagnostics and Therapeutics, Kyoto Prefectural Univesity of Medicine, Kyoto, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
4
|
Fujibayashi Y, Isa R, Nishiyama D, Sakamoto-Inada N, Kawasumi N, Yamaguchi J, Kuwahara-Ota S, Matsumura-Kimoto Y, Tsukamoto T, Chinen Y, Shimura Y, Kobayashi T, Horiike S, Taniwaki M, Handa H, Kuroda J. Aberrant BUB1 Overexpression Promotes Mitotic Segregation Errors and Chromosomal Instability in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12082206. [PMID: 32781708 PMCID: PMC7464435 DOI: 10.3390/cancers12082206] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023] Open
Abstract
Chromosome instability (CIN), the hallmarks of cancer, reflects ongoing chromosomal changes caused by chromosome segregation errors and results in whole chromosomal or segmental aneuploidy. In multiple myeloma (MM), CIN contributes to the acquisition of tumor heterogeneity, and thereby, to disease progression, drug resistance, and eventual treatment failure; however, the underlying mechanism of CIN in MM remains unclear. Faithful chromosomal segregation is tightly regulated by a series of mitotic checkpoint proteins, such as budding uninhibited by benzimidazoles 1 (BUB1). In this study, we found that BUB1 was overexpressed in patient-derived myeloma cells, and BUB1 expression was significantly higher in patients in an advanced stage compared to those in an early stage. This suggested the involvement of aberrant BUB1 overexpression in disease progression. In human myeloma-derived cell lines (HMCLs), BUB1 knockdown reduced the frequency of chromosome segregation errors in mitotic cells. In line with this, partial knockdown of BUB1 showed reduced variations in chromosome number compared to parent cells in HMCLs. Finally, BUB1 overexpression was found to promote the clonogenic potency of HMCLs. Collectively, these results suggested that enhanced BUB1 expression caused an increase in mitotic segregation errors and the resultant emergence of subclones with altered chromosome numbers and, thus, was involved in CIN in MM.
Collapse
Affiliation(s)
- Yuto Fujibayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Reiko Isa
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Daichi Nishiyama
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Natsumi Sakamoto-Inada
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Norichika Kawasumi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Junko Yamaguchi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Saeko Kuwahara-Ota
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Yayoi Matsumura-Kimoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Yoshiaki Chinen
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
- Department of Hematology, Fukuchiyama City Hospital, Kyoto 620-8505, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Tsutomu Kobayashi
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Shigeo Horiike
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
| | - Masafumi Taniwaki
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
- Center for Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan;
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (Y.F.); (R.I.); (D.N.); (N.S.-I.); (N.K.); (J.Y.); (S.K.-O.); (Y.M.-K.); (T.T.); (Y.C.); (Y.S.); (T.K.); (S.H.); (M.T.)
- Correspondence: ; Tel.: +81-75-251-5740
| |
Collapse
|