1
|
Zhang F, Issah MA, Fu HY, Zhou HR, Liu TB, Shen JZ. LATS1 Promotes B-ALL Tumorigenesis by Regulating YAP1 Phosphorylation and Subcellular Localization. Curr Med Sci 2024; 44:81-92. [PMID: 38277019 DOI: 10.1007/s11596-023-2821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/15/2023] [Indexed: 01/27/2024]
Abstract
OBJECTIVE YAP1 plays a dual role as an oncogene and tumor suppressor gene in several tumors; differentiating between these roles may depend on the YAP1 phosphorylation pattern. The specific function of YAP1 in B cell acute lymphoblastic leukemia (B-ALL), however, is currently unclear. Thus, in the present study, the role of YAP1 in B-ALL was investigated using relevant cell lines and patient datasets. METHODS The effects of shRNA-mediated knockdown on YAP1 and LATS1 levels in the NALM6 and MOLT-4 cell lines were examined using Western blotting, quantitative real-time polymerase chain reaction, flow cytometry, immunostaining, and nude mouse subcutaneous tumorigenesis experiments. Gene expression levels of Hippo pathway-related molecules before and after verteporfin (VP) treatment were compared using RNA-Seq to identify significant Hippo pathway-related genes in NALM6 cells. RESULTS Patients with ALL showing high YAP1 expression and low YAP1-Ser127 phosphorylation levels had worse prognoses than those with low YAP1 protein expression and high YAP1-Ser127 phosphorylation levels. YAP1-Ser127 phosphorylation levels were lower in NALM6 cells than in MOLT-4 and control cells; YAP1 was distributed in the nuclei in NALM6 cells. Knockdown of YAP1 inhibited MOLT-4 and NALM6 cell proliferation and arrested the NALM6 cell cycle in the G0/G1 phase. Before and after VP treatment, the expression of the upstream gene LATS1 was upregulated; its overexpression promoted YAP1-Ser127 phosphorylation. Further, YAP1 was distributed in the plasma. CONCLUSION LATS1 may downregulate YAP1-Ser127 phosphorylation and maintain B-ALL cell function; thus, VP, which targets this axis, may serve as a new therapeutic method for improving the outcomes for B-ALL patients.
Collapse
Affiliation(s)
- Feng Zhang
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical Center of Hematology, Fujian Institute of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Mohammed Awal Issah
- Tamale Technical University, Faculty of Allied Health and Pharmaceutical Sciences, Department of Medical Laboratory Technology, Tamale, NS-011-2000, Ghana
| | - Hai-Ying Fu
- Department of Hematology, The Third Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, The Third People's Hospital of Fujian Province, Fuzhou, 350122, China
| | - Hua-Rong Zhou
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical Center of Hematology, Fujian Institute of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ting-Bo Liu
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical Center of Hematology, Fujian Institute of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jian-Zhen Shen
- Fujian Provincial Key Laboratory on Hematology, Fujian Medical Center of Hematology, Fujian Institute of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Lv L, Zhou X. Targeting Hippo signaling in cancer: novel perspectives and therapeutic potential. MedComm (Beijing) 2023; 4:e375. [PMID: 37799806 PMCID: PMC10547939 DOI: 10.1002/mco2.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
As highly conserved among diverse species, Hippo signaling pathway regulates various biological processes, including development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size. Studies in the last two decades have provided a good framework for how these fundamental functions of Hippo signaling are tightly regulated by a network with numerous intracellular and extracellular factors. The Hippo signaling pathway, when dysregulated, may lead to a wide variety of diseases, especially cancer. There is growing evidence demonstrating that dysregulated Hippo signaling is closely associated with tumorigenesis, cancer cell invasion, and migration, as well as drug resistance. Therefore, the Hippo pathway is considered an appealing therapeutic target for the treatment of cancer. Promising novel agents targeting the Hippo signaling pathway for cancers have recently emerged. These novel agents have shown antitumor activity in multiple cancer models and demonstrated therapeutic potential for cancer treatment. However, the detailed molecular basis of the Hippo signaling-driven tumor biology remains undefined. Our review summarizes current advances in understanding the mechanisms by which Hippo signaling drives tumorigenesis and confers drug resistance. We also propose strategies for future preclinical and clinical development to target this pathway.
Collapse
Affiliation(s)
- Liemei Lv
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
3
|
Jandl K, Radic N, Zeder K, Kovacs G, Kwapiszewska G. Pulmonary vascular fibrosis in pulmonary hypertension - The role of the extracellular matrix as a therapeutic target. Pharmacol Ther 2023; 247:108438. [PMID: 37210005 DOI: 10.1016/j.pharmthera.2023.108438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Pulmonary hypertension (PH) is a condition characterized by changes in the extracellular matrix (ECM) deposition and vascular remodeling of distal pulmonary arteries. These changes result in increased vessel wall thickness and lumen occlusion, leading to a loss of elasticity and vessel stiffening. Clinically, the mechanobiology of the pulmonary vasculature is becoming increasingly recognized for its prognostic and diagnostic value in PH. Specifically, the increased vascular fibrosis and stiffening resulting from ECM accumulation and crosslinking may be a promising target for the development of anti- or reverse-remodeling therapies. Indeed, there is a huge potential in therapeutic interference with mechano-associated pathways in vascular fibrosis and stiffening. The most direct approach is aiming to restore extracellular matrix homeostasis, by interference with its production, deposition, modification and turnover. Besides structural cells, immune cells contribute to the level of ECM maturation and degradation by direct cell-cell contact or the release of mediators and proteases, thereby opening a huge avenue to target vascular fibrosis via immunomodulation approaches. Indirectly, intracellular pathways associated with altered mechanobiology, ECM production, and fibrosis, offer a third option for therapeutic intervention. In PH, a vicious cycle of persistent activation of mechanosensing pathways such as YAP/TAZ initiates and perpetuates vascular stiffening, and is linked to key pathways disturbed in PH, such as TGF-beta/BMPR2/STAT. Together, this complexity of the regulation of vascular fibrosis and stiffening in PH allows the exploration of numerous potential therapeutic interventions. This review discusses connections and turning points of several of these interventions in detail.
Collapse
Affiliation(s)
- Katharina Jandl
- Division of Pharmacology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria.
| | - Nemanja Radic
- Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria
| | - Katarina Zeder
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Graz, Austria; Division of Physiology, Otto Loewi Research Center, Medical University Graz, Graz, Austria; Institute for Lung Health, Member of the German Lung Center (DZL), Giessen, Germany
| |
Collapse
|
4
|
Liu YH, Zhu M, Lei PP, Pan XY, Ma WN. ND‑09 inhibits chronic myeloid leukemia K562 cell growth by regulating BCR‑ABL signaling. Oncol Rep 2021; 46:136. [PMID: 34036393 PMCID: PMC8144938 DOI: 10.3892/or.2021.8087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic myeloid leukemia (CML) accounts for approximately 15% of new adult leukemia cases. The fusion gene BCR‑ABL is an important biological basis and target for CML. In the present study, a novel compound, ND‑09, was developed and its inhibitory effect and mechanism of action on CML growth were evaluated using RT‑PCR and western blot analysis. The results showed that ND‑09 demonstrated a high level of inhibitory action toward CML cells overexpressing BCR‑ABL and induced K562 cell apoptosis through the mitochondrial pathway. Notably, combined ND‑09 and BCR‑ABL siRNA treatment could better inhibit cell proliferation and induce apoptosis in K562 cells. Furthermore, this growth effect of BCR‑ABL siRNA could be fully rescued by transfection with BCR‑ABL. ND‑09 exhibited a good fit within BCR‑ABL and occupied its ATP‑binding pocket, thus altering BCR‑ABL kinase activity. Therefore, ND‑09 downregulated the phosphorylation of BCR‑ABL and ABL, ultimately inhibiting the downstream signaling pathways in K562 cells. These findings suggest that ND‑09 induces growth arrest in CML cells by targeting BCR‑ABL.
Collapse
MESH Headings
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Benzamides/chemistry
- Benzamides/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Down-Regulation
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Jurkat Cells
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Phosphorylation
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Yan-Hong Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, Shaanxi 710061, P.R. China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, Shaanxi 710061, P.R. China
| | - Pan-Pan Lei
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, Shaanxi 710061, P.R. China
| | - Xiao-Yan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, Shaanxi 710061, P.R. China
| | - Wei-Na Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
5
|
New Insights into YES-Associated Protein Signaling Pathways in Hematological Malignancies: Diagnostic and Therapeutic Challenges. Cancers (Basel) 2021; 13:cancers13081981. [PMID: 33924049 PMCID: PMC8073623 DOI: 10.3390/cancers13081981] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary YES-associated protein (YAP) is a co-transcriptional activator that binds to transcriptional factors to increase the rate of transcription of a set of genes, and it can intervene in the onset and progression of different tumors. Most of the data in the literature refer to the effects of the YAP system in solid neoplasms. In this review, we analyze the possibility that YAP can also intervene in hematological neoplasms such as lymphomas, multiple myeloma, and acute and chronic leukemias, modifying the phenomena of cell proliferation and cell death. The possibilities of pharmacological intervention related to the YAP system in an attempt to use its modulation therapeutically are also discussed. Abstract The Hippo/YES-associated protein (YAP) signaling pathway is a cell survival and proliferation-control system with its main activity that of regulating cell growth and organ volume. YAP operates as a transcriptional coactivator in regulating the onset, progression, and treatment response in numerous human tumors. Moreover, there is evidence suggesting the involvement of YAP in the control of the hematopoietic system, in physiological conditions rather than in hematological diseases. Nevertheless, several reports have proposed that the effects of YAP in tumor cells are cell-dependent and cell-type-determined, even if YAP usually interrelates with extracellular signaling to stimulate the onset and progression of tumors. In the present review, we report the most recent findings in the literature on the relationship between the YAP system and hematological neoplasms. Moreover, we evaluate the possible therapeutic use of the modulation of the YAP system in the treatment of malignancies. Given the effects of the YAP system in immunosurveillance, tumorigenesis, and chemoresistance, further studies on interactions between the YAP system and hematological malignancies will offer very relevant information for the targeting of these diseases employing YAP modifiers alone or in combination with chemotherapy drugs.
Collapse
|
6
|
The tumor suppressor role of salvador family WW domain-containing protein 1 (SAV1): one of the key pieces of the tumor puzzle. J Cancer Res Clin Oncol 2021; 147:1287-1297. [PMID: 33580421 DOI: 10.1007/s00432-021-03552-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE In the complex tumor scenario, understanding the function of proteins with protumor or antitumor roles is essential to support advances in the cancer clinical area. Among them, the salvador family WW domain-containing protein 1 (SAV1) is highlighted. This protein plays a fundamental role in the tumor suppressor face of the Hippo pathway, which are responsible for controlling cell proliferation, organ size, development and tissue homeostasis. However, the functional dysregulation of this pathway may contribute to tumorigenesis and tumor progression. As SAV1 is a tumor suppressor scaffold protein, we explored the functions performed by SAV1 with its partners, the regulation of its expression, and its antitumor role in various types of cancer. METHODS We selected and analyzed 80 original articles and reviews from Pubmed that focuses on the study of SAV1 in cancer. RESULTS SAV1 interacts with several proteins, has different functions and acts as tumor suppressor by other mechanisms besides Hippo pathway. SAV1 expression regulation seems to occur by microRNAs and rarely by mutation or promoter methylation. It is downregulated in different types of cancer, which leads to cancer promotion and progression and is associated with poor prognosis. In vivo models have shown that the loss of SAV1 contributes to tumorigenesis. CONCLUSION SAV1 plays a relevant role as tumor suppressor in several types of cancer, highlighting SAV1 and the Hippo pathway's importance to cancer. Thus, encouraging further studies to include the SAV1 as a molecular key piece in cancer biology and in clinical approaches to cancer.
Collapse
|
7
|
Cui D, Liu Y, Ma J, Lin K, Xu K, Lin J. Identification of key genes and pathways in endometriosis by integrated expression profiles analysis. PeerJ 2020; 8:e10171. [PMID: 33354413 PMCID: PMC7727381 DOI: 10.7717/peerj.10171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to integrate the existing expression profile data on endometriosis (EM)-related tissues in order to identify the differentially expressed genes. In this study, three series of raw expression data were downloaded from GEO database. Differentially expressed genes (DEGs) in three tissue types were screened. GO, KEGG pathway enrichment analysis, core differential genes (CDGs) protein–protein interaction (PPI) network and weighted gene co-expression network analysis (WGCNA) were performed, finally, the dysregulation of Hippo pathway in ectopic endometrium (EC) was detected by Western blotting. A total of 1,811 DEGs between eutopic (EU) and normal endometrium (NE), 5,947 DEGs between EC and EU, and 3,192 DEGs between EC and NE datasets were identified. After screening, 394 CDGs were obtained, and 5 hub genes identified in the PPI network. CDGs enrichment and WGCNA network analysis revealed cell proliferation, differentiation, migration and other biological processes, Hippo and Wnt signaling pathways, and a variety of tumor-related pathways. Western blotting results showed that YAP/TAZ was upregulated, and MOB1, pMOB1, SAV1, LATS1 and LATS2 were downregulated in EC. Moreover, CDGs, especially the hub genes, are potential biomarkers and therapeutic targets. Finally, the Hippo pathway might play a key role in the development of endometriosis.
Collapse
Affiliation(s)
- Ding Cui
- Department of Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Liu
- Department of Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyan Ma
- Department of Laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaiqing Lin
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaihong Xu
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lin
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Zhao Z, Xiang S, Qi J, Wei Y, Zhang M, Yao J, Zhang T, Meng M, Wang X, Zhou Q. Correction of the tumor suppressor Salvador homolog-1 deficiency in tumors by lycorine as a new strategy in lung cancer therapy. Cell Death Dis 2020; 11:387. [PMID: 32439835 PMCID: PMC7242319 DOI: 10.1038/s41419-020-2591-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
Salvador homolog-1 (SAV1) is a tumor suppressor required for activation of the tumor-suppressive Hippo pathway and inhibition of tumorigenesis. SAV1 is defective in several cancer types. SAV1 deficiency in cells promotes tumorigenesis and cancer metastasis, and is closely associated with poor prognosis for cancer patients. However, investigation of therapeutic strategies to target SAV1 deficiency in cancer is lacking. Here we found that the small molecule lycorine notably increased SAV1 levels in lung cancer cells by inhibiting SAV1 degradation via a ubiquitin-lysosome system, and inducing phosphorylation and activation of the SAV1-interacting protein mammalian Ste20-like 1 (MST1). MST1 activation then caused phosphorylation, ubiquitination, and degradation of the oncogenic Yes-associated protein (YAP), therefore inhibiting YAP-activated transcription of oncogenic genes and tumorigenic AKT and NF-κB signal pathways. Strikingly, treating tumor-bearing xenograft mice with lycorine increased SAV1 levels, and strongly inhibited tumor growth, vasculogenic mimicry, and metastasis. This work indicates that correcting SAV1 deficiency in lung cancer cells is a new strategy for cancer therapy. Our findings provide a new platform for developing novel cancer therapeutics.
Collapse
Affiliation(s)
- Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shufen Xiang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jindan Qi
- School of Nursing, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Yijun Wei
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jun Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Tong Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xiaohua Wang
- School of Nursing, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123, P. R. China. .,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and the Chinese Ministry of Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|