1
|
Kobayashi T, Makimoto S, Ohnuki N, Hossain MB, Jahan MI, Matsuo M, Imakawa K, Satou Y. A rapid and simple clonality assay for bovine leukemia virus-infected cells by amplified fragment length polymorphism (AFLP) analysis. Microbiol Spectr 2024:e0171424. [PMID: 39570050 DOI: 10.1128/spectrum.01714-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Enzootic bovine leukosis (EBL), although eradicated in some European countries, is still the most common neoplastic disease of cattle, caused by the bovine leukemia virus (BLV). During the progression of EBL, BLV-infected cells clonally expand, and some of which result in tumor onset. The clonality of BLV-infected cells is generally evaluated with NGS or Sanger sequencing. Although these methods clearly distinguish EBL from non-EBL cases, the procedures are complex and not practical for routine veterinary diagnosis. In this study, we developed an amplified fragment length polymorphism (AFLP) analysis for BLV clonality assay (BLV-AFLP). This analysis uses restriction enzyme digestion to amplify the chimeric regions of BLV 3' linear transcribed region (LTR) and host genome through conventional polymerase chain reaction (PCR) and visualizes the results by gel-electrophoresis. The method was established using cattle samples representing different stages of the disease: BLV-uninfected, non-EBL, and EBL cattle. Non-EBL cattle showed smeared bands, indicating polyclonal proliferation, while EBL cattle showed distinct bands, indicating clonal expansion. The results of BLV-AFLP correlated well with those of previously reported methods, suggesting its efficacy in detecting clonal proliferation. The validation using blood samples of non-EBL cattle and tumor samples of EBL cattle confirmed that BLV-AFLP could effectively identify clonal proliferation in EBL samples. Moreover, the emergence of dominant clones in the tumor at later stages was successfully detected before EBL onset in some cattle, highlighting its sensitivity and potential for early detection. Overall, BLV-AFLP is suitable for practical use in the field, improving BLV management strategies and minimizing economic losses. IMPORTANCE Enzootic bovine leukosis (EBL) is routinely diagnosed based on external manifestations at the farm, such as the presence of tumors and/or general lymph node enlargement. However, due to the nonspecific clinical manifestations of EBL, over half of EBL cases are unrecognized at the farm, with most cases being diagnosed during postmortem inspection at the slaughterhouse. Early detection and monitoring of clonal expansion are necessary for managing EBL and reducing economic losses. In this study, we developed BLV-AFLP that represents a significant advancement in the diagnosis of EBL in cattle. This method can rapidly assess the clonal proliferation of BLV-infected cells, crucial for distinguishing between asymptomatic and EBL cattle. Additionally, tracking clonal dynamics offers insights into the disease's progression, potentially providing strategies for avoiding economic losses. Overall, as BLV-AFLP is a simple and rapid test for detecting EBL, it is feasible and efficient for routine veterinary practice.
Collapse
Affiliation(s)
- Tomoko Kobayashi
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan
| | - Sakurako Makimoto
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan
| | - Nagaki Ohnuki
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan
| | - Md Belal Hossain
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Food Microbiology, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - M Ishrat Jahan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Misaki Matsuo
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kazuhiko Imakawa
- Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Itonaga H, Kato T, Sawayama Y, Katsuoka S, Furumoto T, Matsumoto N, Sasaki D, Yamada Y, Hashimoto M, Fujioka M, Sakamoto H, Hasegawa H, Imaizumi Y, Nagai K, Yanagihara K, Miyazaki Y. RAISING revealed a heterogenous pattern of HTLV-1 clonality after HLA-haploidentical peripheral blood stem cell transplantation for ATL. Leuk Lymphoma 2024; 65:275-278. [PMID: 37909304 DOI: 10.1080/10428194.2023.2276058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Affiliation(s)
- Hidehiro Itonaga
- Transfusion and Cell Therapy Unit, Nagasaki University Hospital, Nagasaki, Japan
| | - Takeharu Kato
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Yasushi Sawayama
- Department of Hematology, Sasebo City General Hospital, Sasebo, Japan
| | | | - Takafumi Furumoto
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Nariyoshi Matsumoto
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Daisuke Sasaki
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yuichi Yamada
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Miki Hashimoto
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Machiko Fujioka
- Department of Hematology, Sasebo City General Hospital, Sasebo, Japan
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hikaru Sakamoto
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Kazuhiro Nagai
- Department of Laboratory Medicine, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
3
|
Fukano K, Wakae K, Nao N, Saito M, Tsubota A, Toyoshima T, Aizaki H, Iijima H, Matsudaira T, Kimura M, Watashi K, Sugiura W, Muramatsu M. A versatile method to profile hepatitis B virus DNA integration. Hepatol Commun 2023; 7:e0328. [PMID: 38051537 PMCID: PMC10697629 DOI: 10.1097/hc9.0000000000000328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND HBV DNA integration into the host genome is frequently found in HBV-associated HCC tissues and is associated with hepatocarcinogenesis. Multiple detection methods, including hybrid capture-sequencing, have identified integration sites and provided clinical implications; however, each has advantages and disadvantages concerning sensitivity, cost, and throughput. Therefore, methods that can comprehensively and cost-effectively detect integration sites with high sensitivity are required. Here, we investigated the efficiency of RAISING (Rapid Amplification of Integration Site without Interference by Genomic DNA contamination) as a simple and inexpensive method to detect viral integration by amplifying HBV-integrated fragments using virus-specific primers covering the entire HBV genome. METHODS AND RESULTS Illumina sequencing of RAISING products from HCC-derived cell lines (PLC/PRF/5 and Hep3B cells) identified HBV-human junction sequences as well as their frequencies. The HBV-human junction profiles identified using RAISING were consistent with those determined using hybrid capture-sequencing, and the representative junctions could be validated by junction-specific nested PCR. The comparison of these detection methods revealed that RAISING-sequencing outperforms hybrid capture-sequencing in concentrating junction sequences. RAISING-sequencing was also demonstrated to determine the sites of de novo integration in HBV-infected HepG2-NTCP cells, primary human hepatocytes, liver-humanized mice, and clinical specimens. Furthermore, we made use of xenograft mice subcutaneously engrafted with PLC/PRF/5 or Hep3B cells, and HBV-human junctions determined by RAISING-sequencing were detectable in the plasma cell-free DNA using droplet digital PCR. CONCLUSIONS RAISING successfully profiles HBV-human junction sequences with smaller amounts of sequencing data and at a lower cost than hybrid capture-sequencing. This method is expected to aid basic HBV integration and clinical diagnosis research.
Collapse
Affiliation(s)
- Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
| | - Masumichi Saito
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihito Tsubota
- Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Takae Toyoshima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroko Iijima
- Department of Internal Medicine, Division of Hepatobiliary and Pancreatic Disease, Hyogo Medical University, Hyogo, Japan
| | - Takahiro Matsudaira
- Biotechnological Research Support Division, FASMAC Co., Ltd., Kanagawa, Japan
| | - Moto Kimura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| |
Collapse
|
4
|
Clone Dynamics and Its Application for the Diagnosis of Enzootic Bovine Leukosis. J Virol 2023; 97:e0154222. [PMID: 36533951 PMCID: PMC9888225 DOI: 10.1128/jvi.01542-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bovine leukemia virus (BLV) infection results in polyclonal expansion of infected B lymphocytes, and ~5% of infected cattle develop enzootic bovine leukosis (EBL). Since BLV is a retrovirus, each individual clone can be identified by using viral integration sites. To investigate the distribution of tumor cells in EBL cattle, we performed viral integration site analysis by using a viral DNA capture-sequencing method. We found that the same tumor clones existed in peripheral blood, with a dominance similar to that in lymphoma tissue. Additionally, we observed that multiple tumor tissues from different sites harbored the identical clones, indicating that tumor cells can circulate and distribute systematically in EBL cattle. To investigate clonal expansion of BLV-infected cells during a long latent period, we collected peripheral blood samples from asymptomatic cattle every 2 years, among which several cattle developed EBL. We found that no detectable EBL clone existed before the diagnosis of EBL in some cases; in the other cases, clones that were later detected as malignant clones at the EBL stage were present several months or even years before the disease onset. To establish a feasible clonality-based method for the diagnosis of EBL, we simplified a quick and cost-effective method, namely, rapid amplification of integration sites for BLV infection (BLV-RAIS). We found that the clonality values (Cvs) were well correlated between the BLV-RAIS and viral DNA capture-sequencing methods. Furthermore, receiver operating characteristic (ROC) curve analysis identified an optimal Cv cutoff value of 0.4 for EBL diagnosis, with excellent diagnostic sensitivity (94%) and specificity (100%). These results indicated that the RAIS method efficiently and reliably detected expanded clones not only in lymphoma tissue but also in peripheral blood. Overall, our findings elucidated the clonal dynamics of BLV- infected cells during EBL development. In addition, Cvs of BLV-infected cells in blood can be used to establish a valid and noninvasive diagnostic test for potential EBL onset. IMPORTANCE Although BLV has been eradicated in some European countries, BLV is still endemic in other countries, including Japan and the United States. EBL causes huge economic damage to the cattle industry. However, there are no effective drugs or vaccines to control BLV infection and related diseases. The strategy of eradication of infected cattle is not practical due to the high endemicity of BLV. Furthermore, how BLV-infected B cell clones proliferate during oncogenesis and their distribution in EBL cattle have yet to be elucidated. Here, we provided evidence that tumor cells are circulating in the blood of diseased cattle. Thus, the Cv of virus-infected cells in blood is useful information for the evaluation of the disease status. The BLV-RAIS method provides quantitative and accurate clonality information and therefore is a promising method for the diagnosis of EBL.
Collapse
|
5
|
Diagnosis and Early Prediction of Lymphoma Using High-Throughput Clonality Analysis of Bovine Leukemia Virus-Infected Cells. Microbiol Spectr 2022; 10:e0259522. [PMID: 36227090 PMCID: PMC9769566 DOI: 10.1128/spectrum.02595-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bovine leukemia virus (BLV), a retrovirus, infects B cells of ruminants and is integrated into the host genome as a provirus for lifelong infection. After a long latent period, 1% to 5% of BLV-infected cattle develop aggressive lymphoma, enzootic bovine leukosis (EBL). Since the clonal expansion of BLV-infected cells is essential for the development of EBL, the clonality of proviral integration sites could be a molecular marker for diagnosis and early prediction of EBL. Recently, we developed Rapid Amplification of the Integration Site without Interference by Genomic DNA Contamination (RAISING) and an analysis software of clonality value (CLOVA) to analyze the clonality of transgene-integrated cells. RAISING-CLOVA is capable of assessing the risk of adult T-cell leukemia/lymphoma development in human T-cell leukemia virus-I-infected individuals through the clonality analysis of proviral integration sites. Thus, we herein examined the performance of RAISING-CLOVA for the clonality analysis of BLV-infected cells and conducted a comprehensive clonality analysis by RAISING-CLOVA in EBL and non-EBL cattle. RAISING-CLOVA targeting BLV was a highly accurate and reproducible method for measuring the clonality value. The comprehensive clonality analysis successfully distinguished EBL from non-EBL specimens with high sensitivity and specificity. A longitudinal clonality analysis in BLV-infected sheep, an experimental model of lymphoma, also confirmed the effectiveness of RAISING-CLOVA for early detection of EBL development. Therefore, our study emphasizes the usefulness of RAISING-CLOVA as a routine clinical test for monitoring virus-related cancers. IMPORTANCE Bovine leukemia virus (BLV) infection causes aggressive B-cell lymphoma in cattle and sheep. The virus has spread to farms around the world, causing significant economic damage to the livestock industry. Thus, the identification of high-risk asymptomatic cattle before they develop lymphoma can be effective in reducing the economic damage. Clonal expansion of BLV-infected cells is a promising marker for the development of lymphoma. Recently, we have developed a high-throughput method to amplify random integration sites of transgenes in host genomes and analyze their clonality, named as RAISING-CLOVA. As a new application of our technology, in this study, we demonstrate the value of the RAISING-CLOVA method for the diagnosis and early prediction of lymphoma development by BLV infection in cattle. RAISING-CLOVA is a reliable technology for monitoring the clonality of BLV-infected cells and would contribute to reduce the economic losses by EBL development.
Collapse
|
6
|
Wada Y, Sato T, Hasegawa H, Matsudaira T, Nao N, Coler-Reilly ALG, Tasaka T, Yamauchi S, Okagawa T, Momose H, Tanio M, Kuramitsu M, Sasaki D, Matsumoto N, Yagishita N, Yamauchi J, Araya N, Tanabe K, Yamagishi M, Nakashima M, Nakahata S, Iha H, Ogata M, Muramatsu M, Imaizumi Y, Uchimaru K, Miyazaki Y, Konnai S, Yanagihara K, Morishita K, Watanabe T, Yamano Y, Saito M. RAISING is a high-performance method for identifying random transgene integration sites. Commun Biol 2022; 5:535. [PMID: 35654946 PMCID: PMC9163355 DOI: 10.1038/s42003-022-03467-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Both natural viral infections and therapeutic interventions using viral vectors pose significant risks of malignant transformation. Monitoring for clonal expansion of infected cells is important for detecting cancer. Here we developed a novel method of tracking clonality via the detection of transgene integration sites. RAISING (Rapid Amplification of Integration Sites without Interference by Genomic DNA contamination) is a sensitive, inexpensive alternative to established methods. Its compatibility with Sanger sequencing combined with our CLOVA (Clonality Value) software is critical for those without access to expensive high throughput sequencing. We analyzed samples from 688 individuals infected with the retrovirus HTLV-1, which causes adult T-cell leukemia/lymphoma (ATL) to model our method. We defined a clonality value identifying ATL patients with 100% sensitivity and 94.8% specificity, and our longitudinal analysis also demonstrates the usefulness of ATL risk assessment. Future studies will confirm the broad applicability of our technology, especially in the emerging gene therapy sector.
Collapse
Affiliation(s)
- Yusaku Wada
- Biotechnological Research Support Division, FASMAC Co., Ltd, Atsugi, Kanagawa, 243-0021, Japan
| | - Tomoo Sato
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8512, Japan
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, 852-8501, Japan
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Takahiro Matsudaira
- Biotechnological Research Support Division, FASMAC Co., Ltd, Atsugi, Kanagawa, 243-0021, Japan
| | - Naganori Nao
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan
| | - Ariella L G Coler-Reilly
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8512, Japan
- Department of Internal Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Shunsuke Yamauchi
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Michikazu Tanio
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, 208-0011, Japan
| | - Daisuke Sasaki
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Nariyoshi Matsumoto
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Naoko Yagishita
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8512, Japan
| | - Junji Yamauchi
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8512, Japan
| | - Natsumi Araya
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8512, Japan
| | - Kenichiro Tanabe
- Pathophysiology and Bioregulation, St. Marianna University Graduate School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Makoto Yamagishi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Makoto Nakashima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Shingo Nakahata
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Hidekatsu Iha
- Department of Microbiology, Faculty of Medicine, Oita University, Oita, 879-5593, Japan
| | - Masao Ogata
- Department of Hematology, Oita University Hospital, Oita, 879-5593, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Kaoru Uchimaru
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Nagasaki University Hospital, Nagasaki, 852-8501, Japan
- Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8102, Japan
| | - Satoru Konnai
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, 852-8501, Japan
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Kazuhiro Morishita
- Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Toshiki Watanabe
- Department of Practical Management of Medical Information, St. Marianna University Graduate School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yoshihisa Yamano
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8512, Japan
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Masumichi Saito
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| |
Collapse
|
7
|
Tamaki K, Mera H, Takeshita S, Fujioka S, Goto M, Matsumoto T, Yamano Y, Takamatsu Y, Tsuboi Y. A refractory human T-cell leukemia virus type 1-associated myelopathy/tropical spastic paraparesis patient with lymphoma-type adult T-cell leukemia/lymphoma: A case report and review of the literature. Medicine (Baltimore) 2021; 100:e27450. [PMID: 34622865 PMCID: PMC8500642 DOI: 10.1097/md.0000000000027450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Adult T-cell leukemia/lymphoma (ATL) and human T-cell leukemia virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) are caused by HTLV-1, but the coexistence of both disorders is rare. The estimated incidence is approximately 3%. PATIENT CONCERNS A 54-year-old man was unable to stand up because of spastic paraparesis 1 month after the onset. He developed lymphadenopathy in the left supraclavicular fossa 5 months after the onset. The spastic paraplegia and sensory symptoms below the thoracic spinal cord level worsened. DIAGNOSES Both blood and cerebrospinal fluid (CSF) tests were positive for anti-HTLV-1 antibodies. The patient was diagnosed with rapidly progressive HAM/TSP. He was also diagnosed with lymphoma-type ATL by the biopsy specimen of the lymph node. CSF examination at the time of symptom exacerbation showed abnormal lymphocytes, suggesting central infiltration of the ATL in the central nervous system. INTERVENTIONS Methylprednisolone pulse therapy and oral prednisolone maintenance therapy were administered for rapidly progressive HAM/TSP. Intrathecal injection of methotrexate was administered for the suggested central infiltration of the ATL. OUTCOMES Methylprednisolone pulse therapy and intrathecal injection of methotrexate did not improve the patient's exacerbated symptoms. Five months later, clumsiness and mild muscle weakness of the fingers appeared, and magnetic resonance imaging showed swelling of the cervical spinal cord. Clonality analysis showed monoclonal proliferation only in the DNA of a lymph node lesion, but not in the CSF and peripheral blood cells. LESSONS This was a case of rapidly progressive HAM/TSP associated with lymphoma-type ATL that was refractory to steroids and chemotherapy. The pathogenesis was presumed to involve ATL cells in the brain and spinal cord because of the presence of abnormal lymphocytes in the CSF, but DNA analysis could not prove direct invasion. This case suggests that when we encounter cases with refractory HAM/TSP, it should be needed to suspect the presence of ATL in the background.
Collapse
Affiliation(s)
- Keiko Tamaki
- Department of Neurology, Fukuoka University, Japan
| | | | | | | | - Maki Goto
- Division of Medical Oncology, Hematology and Infectious Diseases, Fukuoka University, Japan
| | - Taichi Matsumoto
- Department of Drug Informatics and Translational Research, Faculty of Pharmaceutical Sciences, Fukuoka University, Japan
| | - Yoshihisa Yamano
- Division of Neurology, St. Marianna University School of Medicine, Japan
| | - Yasushi Takamatsu
- Division of Medical Oncology, Hematology and Infectious Diseases, Fukuoka University, Japan
| | | |
Collapse
|
8
|
Kato H, Maezawa Y, Ouchi Y, Takayama N, Sone M, Sone K, Takada-Watanabe A, Tsujimura K, Koshizaka M, Nagasawa S, Saitoh H, Ohtaka M, Nakanishi M, Tahara H, Shimamoto A, Iwama A, Eto K, Yokote K. Generation of disease-specific and CRISPR/Cas9-mediated gene-corrected iPS cells from a patient with adult progeria Werner syndrome. Stem Cell Res 2021; 53:102360. [PMID: 34087989 DOI: 10.1016/j.scr.2021.102360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/04/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022] Open
Abstract
Adult progeria Werner syndrome (WS), a rare autosomal recessive disorder, is characterized by accelerated aging symptoms after puberty. The causative gene, WRN, is a member of the RecQ DNA helicase family and is predominantly involved in DNA replication, repair, and telomere maintenance. Here, we report the generation of iPS cells from a patient with WS and correction of the WRN gene by the CRISPR/Cas9-mediated method. These iPSC lines would be a valuable resource for deciphering the pathogenesis of WS.
Collapse
Affiliation(s)
- Hisaya Kato
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan; Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan.
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan; Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan.
| | - Yasuo Ouchi
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Naoya Takayama
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masamitsu Sone
- Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Kanako Sone
- Hibernation Metabolism, Physiology and Development Group, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Aki Takada-Watanabe
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kyoko Tsujimura
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaya Koshizaka
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan; Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Sayaka Nagasawa
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisako Saitoh
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Manami Ohtaka
- TOKIWA-Bio, Inc., Tsukuba, Japan; National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mahito Nakanishi
- TOKIWA-Bio, Inc., Tsukuba, Japan; National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Shimamoto
- Department of Regenerative Medicine Research, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koji Eto
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan; Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
9
|
A Methodology for Assessing Tumor Clonality of Adult T Cell Leukemia/Lymphoma. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:467-473. [PMID: 33313334 PMCID: PMC7701009 DOI: 10.1016/j.omtm.2020.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/17/2020] [Indexed: 11/23/2022]
Abstract
While clonal heterogeneity has been demonstrated in most cancers, quantitative assessment of individual tumor clones has not been translated to inform clinical practice. A few methods have been developed to investigate the tumor clonality of adult T cell leukemia/lymphoma (ATLL), but currently there is no clinically translatable method available for quantifying individual tumor clones in ATLL patients. Here, we present a methodology to assess the tumor clonality of ATLL and quantify patient-specific tumor clones in a clinical setting. The methodology consists of three steps: (1) selective amplification of restriction fragments containing a human T cell leukemia virus type 1 (HTLV-1) integration site, (2) amplicon deep sequencing to estimate the clonal structure and identify HTLV-1 integration sites of dominant clones, and (3) digital PCR targeting the HTLV-1 integration sites of the dominant clones to quantify specific tumor clones. We successfully tracked individual tumor clones using this approach and demonstrated that each clone had a distinct response to therapies. The procedure is straightforward and clinically feasible, which should facilitate the proper assessment and management of ATLL.
Collapse
|