1
|
Fu Y, Zhang F, Wang W, Xu J, Zhao M, Ma C, Cheng Y, Chen W, Su Z, Lv X, Liu Z, Ma K, Ma L. Temporal and Spatial Signatures of Scylla paramamosain Transcriptome Reveal Mechanistic Insights into Endogenous Ovarian Maturation under Risk of Starvation. Int J Mol Sci 2024; 25:700. [PMID: 38255774 PMCID: PMC10815400 DOI: 10.3390/ijms25020700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Variability in food availability leads to condition-dependent investments in reproduction. This study is aimed at understanding the metabolic response and regulatory mechanism of female Scylla paramamosain in response to starvation in a temporal- and tissue-specific manner. The mud crabs were starved for 7 (control), 14, 28, and 40 days for histological and biochemical analysis in the hepatopancreas, ovary, and serum, as well as for RNA sequencing on the hepatopancreas and ovary. We further highlighted candidate gene modules highly linked to physiological traits. Collectively, our observations suggested that starvation triggered endogenous ovarian maturation at the expense of hepatopancreas mass, with both metabolic adjustments to optimize energy and fatty acid supply from hepatopancreas to ovary in the early phase, followed by the activation of autophagy-related pathways in both organs over prolonged starvation. These specific adaptive responses might be considered efficient strategies to stimulate ovarian maturation of Scylla paramamosain under fasting stress, which improves the nutritional value of female mud crabs and other economically important crustaceans.
Collapse
Affiliation(s)
- Yin Fu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Fengying Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Wei Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Jiayuan Xu
- Experimental Base of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ningbo 315604, China
| | - Ming Zhao
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Chunyan Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Yongxu Cheng
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Chen
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Zhixing Su
- Experimental Base of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ningbo 315604, China
| | - Xiaokang Lv
- Experimental Base of East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ningbo 315604, China
| | - Zhiqiang Liu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Keyi Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| | - Lingbo Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; (Y.F.)
| |
Collapse
|
2
|
Jeyachandran S, Chellapandian H, Park K, Kwak IS. A Review on the Involvement of Heat Shock Proteins (Extrinsic Chaperones) in Response to Stress Conditions in Aquatic Organisms. Antioxidants (Basel) 2023; 12:1444. [PMID: 37507982 PMCID: PMC10376781 DOI: 10.3390/antiox12071444] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Heat shock proteins (HSPs) encompass both extrinsic chaperones and stress proteins. These proteins, with molecular weights ranging from 14 to 120 kDa, are conserved across all living organisms and are expressed in response to stress. The upregulation of specific genes triggers the synthesis of HSPs, facilitated by the interaction between heat shock factors and gene promoter regions. Notably, HSPs function as chaperones or helper molecules in various cellular processes involving lipids and proteins, and their upregulation is not limited to heat-induced stress but also occurs in response to anoxia, acidosis, hypoxia, toxins, ischemia, protein breakdown, and microbial infection. HSPs play a vital role in regulating protein synthesis in cells. They assist in the folding and assembly of other cellular proteins, primarily through HSP families such as HSP70 and HSP90. Additionally, the process of the folding, translocation, and aggregation of proteins is governed by the dynamic partitioning facilitated by HSPs throughout the cell. Beyond their involvement in protein metabolism, HSPs also exert a significant influence on apoptosis, the immune system, and various characteristics of inflammation. The immunity of aquatic organisms, including shrimp, fish, and shellfish, relies heavily on the development of inflammation, as well as non-specific and specific immune responses to viral and bacterial infections. Recent advancements in aquatic research have demonstrated that the HSP levels in populations of fish, shrimp, and shellfish can be increased through non-traumatic means such as water or oral administration of HSP stimulants, exogenous HSPs, and heat induction. These methods have proven useful in reducing physical stress and trauma, while also facilitating sustainable husbandry practices such as vaccination and transportation, thereby offering health benefits. Hence, the present review discusses the importance of HSPs in different tissues in aquatic organisms (fish, shrimp), and their expression levels during pathogen invasion; this gives new insights into the significance of HSPs in invertebrates.
Collapse
Affiliation(s)
- Sivakamavalli Jeyachandran
- Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Hethesh Chellapandian
- Lab in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, Republic of Korea
- Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
3
|
Pop MM, Di Lorenzo T, Iepure S. Living on the edge – An overview of invertebrates from groundwater habitats prone to extreme environmental conditions. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1054841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Groundwater ecosystems from cold polar and circumpolar regions, hot springs, as well as those developed in salt, gypsum or in volcanic rocks are one of the environments considered to exhibit extreme environmental conditions such as low (below 0°C) or high (over 45°C) temperatures, hypersaline waters, or with elevated content of toxic gases like hydrogen sulfide or methane. They represent the “unseen ecosystem beneath our feet” and are inhabited by a large diversity of organisms, persisting and flourishing under severe environmental conditions that are usually hostile to the majority of organisms. These types of groundwater ecosystems are remarkable “evolutionary hotspots” that witnessed the adaptive radiation of morphologically and ecologically diverse species, whereas the organisms living here are good models to understand the evolutionary processes and historical factors involved in speciation and adaptation to severe environmental conditions. Here, we provide an overview of the groundwater invertebrates living in continental groundwater habitats prone to extreme environmental conditions in one or more physico-chemical parameters. Invertebrates are represented by a wide variety of taxonomic groups, however dominated by crustaceans that show specific adaptations mostly metabolic, physiologic, and behavioral. Symbiotic associations among bacteria and invertebrates are also discussed enlightening this biological interaction as a potential adaptation of different groundwater invertebrates to cope with severe environmental conditions. Given the high pressures that anthropogenic activities pose on groundwater habitats worldwide, we predict that several of these highly specialized organisms will be prone to extinction in the near future. Finally, we highlight the knowledge gaps and future research approaches in these particular groundwater ecosystems by using integrative-omic studies besides the molecular approach to shed light on genetic variation and phenotypic plasticity at species and populational levels.GRAPHICAL ABSTRACT
Collapse
|
4
|
Differential transcriptomic responses to heat stress in surface and subterranean diving beetles. Sci Rep 2022; 12:16194. [PMID: 36171221 PMCID: PMC9519976 DOI: 10.1038/s41598-022-20229-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Subterranean habitats are generally very stable environments, and as such evolutionary transitions of organisms from surface to subterranean lifestyles may cause considerable shifts in physiology, particularly with respect to thermal tolerance. In this study we compared responses to heat shock at the molecular level in a geographically widespread, surface-dwelling water beetle to a congeneric subterranean species restricted to a single aquifer (Dytiscidae: Hydroporinae). The obligate subterranean beetle Paroster macrosturtensis is known to have a lower thermal tolerance compared to surface lineages (CTmax 38 °C cf. 42–46 °C), but the genetic basis of this physiological difference has not been characterized. We experimentally manipulated the thermal environment of 24 individuals to demonstrate that both species can mount a heat shock response at high temperatures (35 °C), as determined by comparative transcriptomics. However, genes involved in these responses differ between species and a far greater number were differentially expressed in the surface taxon, suggesting it can mount a more robust heat shock response; these data may underpin its higher thermal tolerance compared to subterranean relatives. In contrast, the subterranean species examined not only differentially expressed fewer genes in response to increasing temperatures, but also in the presence of the experimental setup employed here alone. Our results suggest P. macrosturtensis may be comparatively poorly equipped to respond to both thermally induced stress and environmental disturbances more broadly. The molecular findings presented here have conservation implications for P. macrosturtensis and contribute to a growing narrative concerning weakened thermal tolerances in obligate subterranean organisms at the molecular level.
Collapse
|
5
|
Becher J, Englisch C, Griebler C, Bayer P. Groundwater fauna downtown - Drivers, impacts and implications for subsurface ecosystems in urban areas. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104021. [PMID: 35605354 DOI: 10.1016/j.jconhyd.2022.104021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/07/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Groundwater fauna (stygofauna) comprises organisms that have adapted to the dark subterranean environment over a course of thousands and millions of years, typically having slow metabolisms and long life cycles. They are crucial players in the groundwater of oxygenic aquifers, and contribute to various ecosystem services. Today's knowledge of their sensitivity to anthropogenic impacts is incomplete and a critical analysis of the general relevance of local findings is lacking. In this review, we focus on those areas with the highest interference between humans and stygofauna: cities. Here is where local pollution by various contaminants and heat strongly stresses the unique groundwater ecosystems. It is demonstrated that it is difficult to discern the influence of individual factors from the findings reported in field studies, and to extrapolate laboratory results to field conditions. The effects of temperature increase and chemical pollution vary strongly between tested species and test conditions. In general, previous findings indicate that heating, especially in the long-term, will increase mortality, and less adapted species are at risk of vanishing from their habitats. The same may be true for salinity caused by road de-icing in cold urban areas. Furthermore, high sensitivities were shown for ammonium, which will probably be even more pronounced with rising temperatures resulting in altered biodiversity patterns. Toxicity of heavy metals, for a variety of invertebrates, increases with time and chronic exposure. Our current knowledge reveals diverse potential impacts on groundwater fauna by urban pollution, but our insights gained so far can only be validated by standardized and long-term test concepts.
Collapse
Affiliation(s)
- Julia Becher
- Martin Luther University Halle-Wittenberg, Institute of Geosciences and Geography, Department of Applied Geology, Von-Seckendorff-Platz 3, 06120 Halle, Germany.
| | - Constanze Englisch
- University of Vienna, Department of Functional and Evolutionary Ecology, Division of Limnology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Christian Griebler
- University of Vienna, Department of Functional and Evolutionary Ecology, Division of Limnology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Peter Bayer
- Martin Luther University Halle-Wittenberg, Institute of Geosciences and Geography, Department of Applied Geology, Von-Seckendorff-Platz 3, 06120 Halle, Germany
| |
Collapse
|
6
|
Keller NS, Hornbruch G, Lüders K, Werban U, Vogt C, Kallies R, Dahmke A, Richnow HH. Monitoring of the effects of a temporally limited heat stress on microbial communities in a shallow aquifer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146377. [PMID: 33794453 DOI: 10.1016/j.scitotenv.2021.146377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Aquifer thermal energy storage (ATES) is a key concept for the use of renewable energy resources. Interest in ATES performed at high temperature (HT-ATES; > 60 °C) is increasing due to higher energetic efficiencies. HT-ATES induces temperature fluctuations that exceed the natural variability in shallow aquifers, which could lead to adverse effects in subsurface ecosystems by altering the groundwater chemistry, biodiversity, and microbial metabolic activity, resulting in changes of the groundwater quality, biogeochemical processes, and ecosystem functions. The aim of this study was to emulate the initial operating phase of a HT-ATES system with a short-term infiltration of warm water into Pleistocene sandur sediment and, consequently, to monitor the thermal effects on the groundwater microbiome inhabiting an imitated affected space of an HT-ATES system. Therefore, local groundwater was withdrawn, heated up to 75 °C, and re-infiltrated into a shallow aquifer located near Wittstock/Dosse (Brandenburg, Germany) for around five days. Groundwater samples taken regularly before and after the infiltration were analyzed by 16S rRNA gene amplicon sequencing for microbial diversity analyses as well as total cell counting. During the infiltration, a thermal plume with groundwater temperatures increasing from 9 ± 2 to up to ~65 °C was recorded. The highest temperature at which groundwater samples were taken was 34.9 °C, a temperature typically arising in the affected space of an HT-ATES system. The microbial communities in the groundwater were mainly composed of Gammaproteobacteria, Alphaproteobacteria, Bacteroidia, and Actinobacteria, and the total cell numbers ranged from 3.2 * 104 to 3.1 * 106 cells ml-1. Neither the compositions of the microbial communities nor the total number of cells in groundwater were significantly changed upon moderate temperature increase, indicating that the diverse groundwater microbiome was resilient to the temporally limited heat stress.
Collapse
Affiliation(s)
- Nina-Sophie Keller
- Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany.
| | - Götz Hornbruch
- University of Kiel, Institute for Geosciences, 24118 Kiel, Germany.
| | - Klas Lüders
- University of Kiel, Institute for Geosciences, 24118 Kiel, Germany.
| | - Ulrike Werban
- Helmholtz Centre for Environmental Research - UFZ, Department Monitoring & Exploration Technologies, 04318 Leipzig, Germany.
| | - Carsten Vogt
- Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany.
| | - René Kallies
- Helmholtz Centre for Environmental Research - UFZ, Department Environmental Microbiology, 04318 Leipzig, Germany.
| | - Andreas Dahmke
- University of Kiel, Institute for Geosciences, 24118 Kiel, Germany.
| | - Hans Hermann Richnow
- Helmholtz Centre for Environmental Research - UFZ, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany.
| |
Collapse
|
7
|
Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. WATER 2020. [DOI: 10.3390/w12010260] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this overview (introductory article to a special issue including 14 papers), we consider all main types of natural and artificial inland freshwater habitas (fwh). For each type, we identify the main biodiversity patterns and ecological features, human impacts on the system and environmental issues, and discuss ways to use this information to improve stewardship. Examples of selected key biodiversity/ecological features (habitat type): narrow endemics, sensitive (groundwater and GDEs); crenobionts, LIHRes (springs); unidirectional flow, nutrient spiraling (streams); naturally turbid, floodplains, large-bodied species (large rivers); depth-variation in benthic communities (lakes); endemism and diversity (ancient lakes); threatened, sensitive species (oxbow lakes, SWE); diverse, reduced littoral (reservoirs); cold-adapted species (Boreal and Arctic fwh); endemism, depauperate (Antarctic fwh); flood pulse, intermittent wetlands, biggest river basins (tropical fwh); variable hydrologic regime—periods of drying, flash floods (arid-climate fwh). Selected impacts: eutrophication and other pollution, hydrologic modifications, overexploitation, habitat destruction, invasive species, salinization. Climate change is a threat multiplier, and it is important to quantify resistance, resilience, and recovery to assess the strategic role of the different types of freshwater ecosystems and their value for biodiversity conservation. Effective conservation solutions are dependent on an understanding of connectivity between different freshwater ecosystems (including related terrestrial, coastal and marine systems).
Collapse
|
8
|
Pallarés S, Sanchez-Hernandez JC, Colado R, Balart-García P, Comas J, Sánchez-Fernández D. Beyond survival experiments: using biomarkers of oxidative stress and neurotoxicity to assess vulnerability of subterranean fauna to climate change. CONSERVATION PHYSIOLOGY 2020; 8:coaa067. [PMID: 34504711 PMCID: PMC7437362 DOI: 10.1093/conphys/coaa067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 04/19/2020] [Accepted: 07/12/2020] [Indexed: 05/06/2023]
Abstract
Accurate assessments of species vulnerability to climate change need to consider the physiological capacity of organisms to deal with temperature changes and identify early signs of thermally induced stress. Oxidative stress biomarkers and acetylcholinesterase activity are useful proxies of stress at the cellular and nervous system level. Such responses are especially relevant for poor dispersal organisms with limited capacity for behavioural thermoregulation, like deep subterranean species. We combined experimental measurements of upper lethal thermal limits, acclimation capacity and biomarkers of oxidative stress and neurotoxicity to assess the impact of heat stress (20°C) at different exposure times (2 and 7 days) on the Iberian endemic subterranean beetle Parvospeonomus canyellesi. Survival response (7 days of exposure) was similar to that reported for other subterranean specialist beetles (high survival up to 20°C but no above 23°C). However, a low physiological plasticity (i.e. incapacity to increase heat tolerance via acclimation) and signs of impairment at the cellular and nervous system level were observed after 7 days of exposure at 20°C. Such sublethal effects were identified by significant differences in total antioxidant capacity, glutathione S-transferase activity, the ratio of reduced to oxidized forms of glutathione and acetylcholinesterase activity between the control (cave temperature) and 20°C treatment. At 2 days of exposure, most biomarker values indicated some degree of oxidative stress in both the control and high-temperature treatment, likely reflecting an initial altered physiological status associated to factors other than temperature. Considering these integrated responses and the predicted increase in temperature in its unique locality, P. canyellesi would have a narrower thermal safety margin to face climate change than that obtained considering only survival experiments. Our results highlight the importance of exploring thermally sensitive processes at different levels of biological organization to obtain more accurate estimates of the species capacity to face climate change.
Collapse
Affiliation(s)
- Susana Pallarés
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
- Departamento de Ciencias Ambientales, Instituto de Ciencias Ambientales, Universidad de Castilla-La Mancha, Avenida Carlos III, Toledo, 45071, Spain
- Corresponding author: Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, PL4 8AA, Plymouth, UK.
| | - Juan C Sanchez-Hernandez
- Departamento de Ciencias Ambientales, Instituto de Ciencias Ambientales, Universidad de Castilla-La Mancha, Avenida Carlos III, Toledo, 45071, Spain
| | - Raquel Colado
- Departamento de Ciencias Ambientales, Instituto de Ciencias Ambientales, Universidad de Castilla-La Mancha, Avenida Carlos III, Toledo, 45071, Spain
- Departamento de Ecología e Hidrología, Universidad de Murcia, Campus de Espinardo, Murcia, 30100, Spain
| | - Pau Balart-García
- Water and cave beetle evolution Lab, Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37 Barcelona, 08003, Spain
| | - Jordi Comas
- Departamento de Artrópodos, Museu de Ciències Naturals, Parc del Fòrum, Plaza Leonardo da Vinci 4-5 Barcelona, 08019, Spain
| | - David Sánchez-Fernández
- Departamento de Ciencias Ambientales, Instituto de Ciencias Ambientales, Universidad de Castilla-La Mancha, Avenida Carlos III, Toledo, 45071, Spain
- Departamento de Ecología e Hidrología, Universidad de Murcia, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|
9
|
Effect of Temperature Rising on the Stygobitic Crustacean Species Diacyclops belgicus: Does Global Warming Affect Groundwater Populations? WATER 2017. [DOI: 10.3390/w9120951] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Cifoni M, Galassi DMP, Faraloni C, Di Lorenzo T. Test procedures for measuring the (sub)chronic effects of chemicals on the freshwater cyclopoid Eucyclops serrulatus. CHEMOSPHERE 2017; 173:89-98. [PMID: 28107718 DOI: 10.1016/j.chemosphere.2016.12.151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 06/06/2023]
Abstract
The purpose of this study has been to describe test procedures for measuring the (sub)chronic effects of chemicals on the freshwater cyclopoid Eucyclops serrulatus. To this end we have adapted the setting of the standard full life-cycle protocol of the marine harpacticoid A. tenuiremis to E. serrulatus. We have tested the effects of 4 different diets, two temperatures and two rearing volumes on the survival, development, reproduction and population growth rates of this species. Our results have highlighted that full life-cycle tests can be run using 2 mL-glass vials, a diet consisting of a mixture of living cells of Chlorella sorokiniana and Scenedesmus quadricauda, at either 25 °C (test duration: 42 days) or 18 °C (test duration: 51 days). However, the best performance in terms of survival, development, reproducibility and population growth rates with this species was obtained at 18 °C, albeit with significantly longer test duration. Subchronic tests in 2 mL-glass vials with the mixture microalgal diet at both temperatures are available options if considered appropriate for the objectives of a given study. In particular, developmental tests from nauplius to copepodid may profitably be performed in about 11 days at 18 °C and in 6 days at 25 °C. Under the same test conditions, subchronic tests from copepodid to adult may be run in 19 days at 18 °C and in 16 days at 25 °C.
Collapse
Affiliation(s)
- Marco Cifoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, L'Aquila, Italy; Institute of Ecosystem Study - CNR - National Research Council of Italy, Via Madonna del Piano10, 50019, Sesto Fiorentino, Florence, Italy
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, L'Aquila, Italy
| | - Cecilia Faraloni
- Institute of Ecosystem Study - CNR - National Research Council of Italy, Via Madonna del Piano10, 50019, Sesto Fiorentino, Florence, Italy
| | - Tiziana Di Lorenzo
- Institute of Ecosystem Study - CNR - National Research Council of Italy, Via Madonna del Piano10, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
11
|
Mahanty A, Purohit GK, Yadav RP, Mohanty S, Mohanty BP. hsp90 and hsp47 appear to play an important role in minnow Puntius sophore for surviving in the hot spring run-off aquatic ecosystem. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:89-102. [PMID: 27522494 DOI: 10.1007/s10695-016-0270-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
Changes in the expression of a number of hsp genes in minnow Puntius sophore collected from a hot spring run-off (Atri hot spring in Odisha, India; 20o09'N 85°18'E, 36-38 °C) were investigated to study the upper thermal acclimation response under heat stress, using same species from aquaculture ponds (water temperature 27 °C) as control. Expression of hsp genes was analyzed in both groups using RT-qPCR, which showed up-regulation of hsp90 (2.1-fold) and hsp47 (2.5-fold) in hot spring run-off fishes, whereas there was no alteration in expression of other hsps. As the fish inhabit the hot spring run-off area for very long duration, they could have adapted to the environment. To test this hypothesis, fishes collected from hot spring run-off were divided into two groups; one was heat-shocked at 41 °C/24 h, and the other was acclimatized at 27 °C/24 h. Up-regulation of all the hsps (except hsp78) was observed in the heat-shocked fishes, whereas expression of all hsps was found to be down-regulated to the basal level in fishes maintained at 27 °C/24 h. Pathway analysis showed that the expressions of all the hsps except hsp90 are regulated by the transcription factor heat shock factor 1 (Hsf1). This study showed that hsp90 and hsp47 play an important role in Puntius sophore for surviving in the high-temperature environment of the hot spring run-off. Additionally, we show that plasticity in hsp gene expression is not lost in the hot spring run-off population.
Collapse
Affiliation(s)
- Arabinda Mahanty
- Biochemistry Laboratory, Proteomics Unit, Fishery Resource and Environmental Management Division, ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | | | - Ravi Prakash Yadav
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Sasmita Mohanty
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Bimal Prasanna Mohanty
- Biochemistry Laboratory, Proteomics Unit, Fishery Resource and Environmental Management Division, ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India.
| |
Collapse
|
12
|
Heat Shock Proteins in Aquaculture Disease Immunology and Stress Response of Crustaceans. HEAT SHOCK PROTEINS 2017. [DOI: 10.1007/978-3-319-73377-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
13
|
Huenerlage K, Cascella K, Corre E, Toomey L, Lee CY, Buchholz F, Toullec JY. Responses of the arcto-boreal krill species Thysanoessa inermis to variations in water temperature: coupling Hsp70 isoform expressions with metabolism. Cell Stress Chaperones 2016; 21:969-981. [PMID: 27558691 PMCID: PMC5083667 DOI: 10.1007/s12192-016-0720-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022] Open
Abstract
Recent studies have indicated a metabolic temperature sensitivity in both the arcto-boreal krill species Thysanoessa inermis and Thysanoessa raschii that may determine these species' abundance and population persistence at lower latitudes (up to 40° N). T. inermis currently dominates the krill community in the Barents Sea and in the high Arctic Kongsfjord. We aimed to increase the knowledge on the upper thermal limit found in the latter species by estimating the CT50 value (19.7 °C) (critical temperature at which 50 % of animals are reactive) and by linking metabolic rate measurements with molecular approaches. Optical oxygen sensors were used to measure respiration rates in steps of 2 °C (from 0 to 16 °C). To follow the temperature-mediated mechanisms of passive response, i.e., as a proxy for molecular stress, molecular chaperone heat shock protein 70 (Hsp70) sequences were extracted from a transcriptome assembly, and the gene expression kinetics were monitored during an acute temperature exposure to 6 or 10 °C with subsequent recovery at 4 °C. Our results showed upregulation of hsp70 genes, especially the structurally constitutive and mitochondrial isoforms. These findings confirmed the temperature sensitivity of T. inermis and showed that the thermal stress took place before reaching the upper temperature limit estimated by respirometry at 12 °C. This study provides a baseline for further investigations into the thermal tolerances of arcto-boreal Thysanoessa spp. and comparisons with other krill species under different climatic regimes, especially Antarctica.
Collapse
Affiliation(s)
- Kim Huenerlage
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Section Functional Ecology, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | - Kévin Cascella
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, Roscoff, France
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | - Erwan Corre
- Sorbonne Universités, UPMC Université Paris 06, FR 2424 CNRS, ABiMS, Station Biologique de Roscoff, Roscoff, France
- CNRS, FR 2424, Station Biologique de Roscoff, Roscoff, France
| | - Lola Toomey
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, Roscoff, France
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
| | - Chi-Ying Lee
- Department of Biology, National Changhua University of Education, Changhua, 50058, Taiwan
| | - Friedrich Buchholz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Section Functional Ecology, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Jean-Yves Toullec
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144 CNRS, Equipe ABICE, Station Biologique de Roscoff, Roscoff, France.
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France.
| |
Collapse
|
14
|
Baringou S, Rouault JD, Koken M, Hardivillier Y, Hurtado L, Leignel V. Diversity of cytosolic HSP70 Heat Shock Protein from decapods and their phylogenetic placement within Arthropoda. Gene 2016; 591:97-107. [PMID: 27374152 DOI: 10.1016/j.gene.2016.06.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/25/2016] [Accepted: 06/29/2016] [Indexed: 01/16/2023]
Abstract
The 70kDa heat shock proteins (HSP70) are considered the most conserved members of the HSP family. These proteins are primordial to the cell, because of their implications in many cellular pathways (e. g., development, immunity) and also because they minimize the effects of multiple stresses (e. g., temperature, pollutants, salinity, radiations). In the cytosol, two ubiquitous HSP70s with either a constitutive (HSC70) or an inducible (HSP70) expression pattern are found in all metazoan species, encoded by 5 or 6 genes (Drosophila melanogaster or yeast and human respectively). The cytosolic HSP70 protein family is considered a major actor in environmental adaptation, and widely used in ecology as an important biomarker of environmental stress. Nevertheless, the diversity of cytosolic HSP70 remains unclear amongst the Athropoda phylum, especially within decapods. Using 122 new and 311 available sequences, we carried out analyses of the overall cytosolic HSP70 diversity in arthropods (with a focus on decapods) and inferred molecular phylogenies. Overall structural and phylogenetic analyses showed a surprisingly high diversity in cytosolic HSP70 and revealed the existence of several unrecognised groups. All crustacean HSP70 sequences present signature motifs and molecular weights characteristic of non-organellar HSP70, with multiple specific substitutions in the protein sequence. The cytosolic HSP70 family in arthropods appears to be constituted of at least three distinct groups (annotated as A, B and C), which comprise several subdivisions, including both constitutive and inducible forms. Group A is constituted by several classes of Arthropods, while group B and C seem to be specific to Malacostraca and Hexapoda/Chelicerata, respectively. The HSP70 organization appeared much more complex than previously suggested, and far beyond a simple differentiation according to their expression pattern (HSC70 versus HSP70). This study proposes a new classification of cytosolic HSP70 and an evolutionary model of the distinct forms amongst the Arthropoda phylum. The observed differences between HSP70 groups will probably have to be linked to distinct interactions with co-chaperones or other co-factors.
Collapse
Affiliation(s)
- Stephane Baringou
- Université du Maine, Laboratoire Mer-Molécules-Santé FR-CNRS 3473 IUML, Avenue Olivier Messiaen, 72085 Le Mans, France.
| | - Jacques-Deric Rouault
- Laboratoire Evolution, Génomes et Spéciation, UPR9034, CNRS, 91198 Gif-sur-Yvette, France; Université Paris, Sud 11, 91405, Orsay, France.
| | | | - Yann Hardivillier
- Université du Maine, Laboratoire Mer-Molécules-Santé FR-CNRS 3473 IUML, Avenue Olivier Messiaen, 72085 Le Mans, France.
| | - Luis Hurtado
- Department of Wildlife and Fisheries, Texas A&M University, Old Heep Building 110E, TAMU College Station, TX 77843-2258, USA.
| | - Vincent Leignel
- Université du Maine, Laboratoire Mer-Molécules-Santé FR-CNRS 3473 IUML, Avenue Olivier Messiaen, 72085 Le Mans, France.
| |
Collapse
|
15
|
Valenzuela-Castillo A, Sánchez-Paz A, Castro-Longoria R, López-Torres MA, Grijalva-Chon JM. Seasonal changes in gene expression and polymorphism of hsp70 in cultivated oysters (Crassostrea gigas) at extreme temperatures. MARINE ENVIRONMENTAL RESEARCH 2015; 110:25-32. [PMID: 26254584 DOI: 10.1016/j.marenvres.2015.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/30/2015] [Accepted: 07/30/2015] [Indexed: 06/04/2023]
Abstract
The HSP70 proteins are an important element of the response against thermal stress and infectious diseases, and they are highly conserved and ubiquitous. In some species, variations on the hsp70 encoding sequence resulted in intraspecific differential expression, which leads to variations on thermo-tolerance among individuals. This phenomenon has not been described in the Pacific oyster Crassostrea gigas, which is cultivated in Mexico under temperature conditions highly above the optimal for this species. The present study was aimed to identify associations between hsp70 genotypes and their expression levels in C. gigas. By analyzing a 603 bp fragment from the 3' end of the hsp70 gene, 21 different genotypes with 60 nucleotide polymorphic sites were detected, of which 34 sites were found in heterozygous condition. Although no correlation was found between genotype-expression-season, a minimum expression threshold that should be taken into account as an important feature for a future breeding program is proposed.
Collapse
Affiliation(s)
- Adán Valenzuela-Castillo
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico
| | - Arturo Sánchez-Paz
- Centro de Investigaciones Biológicas del Noroeste S.C. Laboratorio de Referencia, Análisis y Diagnóstico en Sanidad Acuícola, Hermosillo, Sonora 83106, Mexico
| | - Reina Castro-Longoria
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico
| | - Marco Antonio López-Torres
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico
| | - José Manuel Grijalva-Chon
- Universidad de Sonora, Departamento de Investigaciones Científicas y Tecnológicas, Hermosillo, Sonora 83000, Mexico.
| |
Collapse
|
16
|
Mutations in HSP70-2 gene change the susceptibility to clinical mastitis in Chinese Holstein. Gene 2015; 559:62-72. [DOI: 10.1016/j.gene.2015.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/17/2022]
|
17
|
Investigating hsp gene expression in liver of Channa striatus under heat stress for understanding the upper thermal acclimation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:381719. [PMID: 25003111 PMCID: PMC4070532 DOI: 10.1155/2014/381719] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 02/08/2023]
Abstract
Changes in hsp gene expression profiles in murrel Channa striatus experimentally exposed to temperature stress (36°C) for 4, 15, and 30 days were investigated; fish collected from aquaculture ponds and maintained in laboratory at the pond temperature (25 ± 1°C) served as control. Channa collected from a hot spring runoff (36°C) was included in the study to examine the hsp profiles beyond 30 days of exposure. Gene expression analyses of a battery of hsps in liver tissues were carried out by quantitative RT-PCR and protein expressions were analyzed by immunoblotting. hsps could be grouped into three clusters based on similarity in response to heat stress: hsp70, hsp78, and hsp60, whose transcript level continued to increase with duration of exposure; hsp90 and hsp110 that increased to a much higher level and then decreased; hsp27 and hsp47 that did not significantly vary as compared to control. The results suggest that Hsp70, Hsp78, and Hsp60 are involved in thermal acclimation and long term survival at high temperature. Fish living in the hot spring runoff appears to continuously express hsps that can be approximated by long term induction of hsps in farmed fish if temperature of their environment is raised to 36°C.
Collapse
|
18
|
Hou Z, Li J, Li S. Diversification of low dispersal crustaceans through mountain uplift: a case study ofGammarus(Amphipoda: Gammaridae) with descriptions of four novel species. Zool J Linn Soc 2014. [DOI: 10.1111/zoj.12119] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhonge Hou
- Key Laboratory of Zoological Systematics and Evolution; Institute of Zoology; Chinese Academy of Sciences; Beijing 100101 China
| | - Junbo Li
- School of Life Science; Shanxi Normal University; Linfen 041000 China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution; Institute of Zoology; Chinese Academy of Sciences; Beijing 100101 China
| |
Collapse
|
19
|
Bedulina DS, Evgen'ev MB, Timofeyev MA, Protopopova MV, Garbuz DG, Pavlichenko VV, Luckenbach T, Shatilina ZM, Axenov-Gribanov DV, Gurkov AN, Sokolova IM, Zatsepina OG. Expression patterns and organization of thehsp70genes correlate with thermotolerance in two congener endemic amphipod species (Eulimnogammarus cyaneusandE. verrucosus) from Lake Baikal. Mol Ecol 2013; 22:1416-30. [DOI: 10.1111/mec.12136] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/14/2022]
Affiliation(s)
- D. S. Bedulina
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - M. B. Evgen'ev
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vaviolva str. 32 Moscow 119991 Russia
- Institute of Cell Biophysics; Russian Academy of Sciences; Institutskaya str. 3 Pushchino 142290 Russia
| | - M. A. Timofeyev
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - M. V. Protopopova
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Siberian Institute of Plant Physiology and Biochemistry; Siberian Branch Russian Academy of Sciences; Lermontov str. 132 Irkutsk 664033 Russia
| | - D. G. Garbuz
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vaviolva str. 32 Moscow 119991 Russia
| | - V. V. Pavlichenko
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Siberian Institute of Plant Physiology and Biochemistry; Siberian Branch Russian Academy of Sciences; Lermontov str. 132 Irkutsk 664033 Russia
| | - T. Luckenbach
- UFZ Helmholtz Centre for Environmental Research; Department of Bioanalytical Ecotoxicology; Permoserstr.15 Leipzig 04318 Germany
| | - Z. M. Shatilina
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - D. V. Axenov-Gribanov
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - A. N. Gurkov
- Irkutsk State University; Karl-Marx str. 1 Irkutsk 664003 Russia
- Baikal Research Centre; Lenina str. 3 Irkutsk 664003 Russia
| | - I. M. Sokolova
- Department of Biology; University of North Carolina at Charlotte; 9201 University City Blvd. Charlotte NC 28223 USA
| | - O. G. Zatsepina
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Vaviolva str. 32 Moscow 119991 Russia
| |
Collapse
|
20
|
Mermillod-Blondin F, Lefour C, Lalouette L, Renault D, Malard F, Simon L, Douady C. Thermal tolerance breadths among groundwater crustaceans living in a thermally constant environment. J Exp Biol 2013; 216:1683-94. [DOI: 10.1242/jeb.081232] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Abstract: The climate variability hypothesis assumes that the thermal tolerance breadth of a species is primarily determined by temperature variations experienced in its environment. If so, aquatic invertebrates living in thermally-buffered environments would be expected to exhibit narrow thermal tolerance breadths (stenothermy). We tested this prediction by studying the thermal physiology of 3 isopods (Asellidae, Proasellus) colonizing groundwater habitats characterized by annual amplitude of temperature less than 1°C. The species responses to temperature variation were assessed in the laboratory using five physiological variables: survival, locomotor activity, aerobic respiration, immune defense and concentrations of total free amino acids and sugars. The three species exhibited contrasted thermal physiologies although all variables were not equally informative. In accordance with the climate variability hypothesis, two species were extremely sensitive even to moderate changes in temperature (2°C) below and above their habitat temperature. In contrast, the third species exhibited a surprisingly high thermal tolerance breadth (11°C). Differences in response to temperature variation among Proasellus species indicated that their thermal physiology was not solely shaped by the current temperature seasonality in their natural habitats. More particularly, recent gene flow among populations living in thermally constant yet contrasted habitats might explain the occurrence of eurytherm species in thermally buffered environments.
Collapse
|