1
|
Hrelia S, Di Renzo L, Bavaresco L, Bernardi E, Malaguti M, Giacosa A. Moderate Wine Consumption and Health: A Narrative Review. Nutrients 2022; 15:175. [PMID: 36615832 PMCID: PMC9824172 DOI: 10.3390/nu15010175] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Although it is clearly established that the abuse of alcohol is seriously harmful to health, much epidemiological and clinical evidence seem to underline the protective role of moderate quantities of alcohol and in particular of wine on health. This narrative review aims to re-evaluate the relationship between the type and dose of alcoholic drink and reduced or increased risk of various diseases, in the light of the most current scientific evidence. In particular, in vitro studies on the modulation of biochemical pathways and gene expression of wine bioactive components were evaluated. Twenty-four studies were selected after PubMed, Scopus and Google Scholar searches for the evaluation of moderate alcohol/wine consumption and health effects: eight studies concerned cardiovascular diseases, three concerned type 2 diabetes, four concerned neurodegenerative diseases, five concerned cancer and four were related to longevity. A brief discussion on viticultural and enological practices potentially affecting the content of bioactive components in wine is included. The analysis clearly indicates that wine differs from other alcoholic beverages and its moderate consumption not only does not increase the risk of chronic degenerative diseases but is also associated with health benefits particularly when included in a Mediterranean diet model. Obviously, every effort must be made to promote behavioral education to prevent abuse, especially among young people.
Collapse
Affiliation(s)
- Silvana Hrelia
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Tor Vergata, 00133 Rome, Italy
| | - Luigi Bavaresco
- Department of Sustainable Crop Production—Viticulture and Pomology Section, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Elisabetta Bernardi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Attilio Giacosa
- Department of Gastroenterology and Clinical Nutrition, Policlinico di Monza, 20900 Monza, Italy
| |
Collapse
|
2
|
Fernandes HJR, Patikas N, Foskolou S, Field SF, Park JE, Byrne ML, Bassett AR, Metzakopian E. Single-Cell Transcriptomics of Parkinson's Disease Human In Vitro Models Reveals Dopamine Neuron-Specific Stress Responses. Cell Rep 2021; 33:108263. [PMID: 33053338 DOI: 10.1016/j.celrep.2020.108263] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/29/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
The advent of induced pluripotent stem cell (iPSC)-derived neurons has revolutionized Parkinson's disease (PD) research, but single-cell transcriptomic analysis suggests unresolved cellular heterogeneity within these models. Here, we perform the largest single-cell transcriptomic study of human iPSC-derived dopaminergic neurons to elucidate gene expression dynamics in response to cytotoxic and genetic stressors. We identify multiple neuronal subtypes with transcriptionally distinct profiles and differential sensitivity to stress, highlighting cellular heterogeneity in dopamine in vitro models. We validate this disease model by showing robust expression of PD GWAS genes and overlap with postmortem adult substantia nigra neurons. Importantly, stress signatures are ameliorated using felodipine, an FDA-approved drug. Using isogenic SNCA-A53T mutants, we find perturbations in glycolysis, cholesterol metabolism, synaptic signaling, and ubiquitin-proteasomal degradation. Overall, our study reveals cell type-specific perturbations in human dopamine neurons, which will further our understanding of PD and have implications for cell replacement therapies.
Collapse
Affiliation(s)
- Hugo J R Fernandes
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Nikolaos Patikas
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Stefanie Foskolou
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Sarah F Field
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Meg L Byrne
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Andrew R Bassett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
3
|
Que Z, Zhou Z, Luo B, Dong C, Jiang Y, Li H, Tian J. Jingfukang induces anti-cancer activity through oxidative stress-mediated DNA damage in circulating human lung cancer cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:204. [PMID: 31391058 PMCID: PMC6686466 DOI: 10.1186/s12906-019-2601-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/18/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Metastasis is the main cause of lung cancer death. As a seed of metastasis, circulating tumor cells are an important target for metastasis intervention. The traditional Chinese medicine, Jinfukang, has been clinically available for the treatment of non-small cell lung cancer (NSCLC). In this study, we investigated the action and underlying mechanisms of Jinfukang against circulating lung tumor cells. METHODS The cell counting kit-8 (CCK-8), colony formation and cell cycle assays were used to study the cell proliferation ability. Flow cytometry was used to detect the apoptosis and the expression level of ROS and Caspase-3. Comet and TUNEL assays were used to detect DNA damage. DNA damage related pathway protein was detected by western blot. RESULTS Jinfukang significantly inhibits the proliferation of CTC-TJH-01 cells by inducing G1 phase arrest and inhibits their colony formation in a dose-dependent manner. Moreover, Jinfukang induces apoptosis in CTC-TJH-01 cells through the ROS-mediated ATM/ATR-p53 pathway and DNA damage. CONCLUSIONS Our findings suggest that Jinfukang may be a potential drug for lung cancer metastasis.
Collapse
Affiliation(s)
- Zujun Que
- Oncology Institute of Traditional Chinese Medicine, Shanghai Research Institute of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032 China
| | - Zhiyi Zhou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032 China
| | - Bin Luo
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032 China
| | - Changsheng Dong
- Oncology Institute of Traditional Chinese Medicine, Shanghai Research Institute of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032 China
| | - Yi Jiang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032 China
| | - Hegen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032 China
| | - Jianhui Tian
- Oncology Institute of Traditional Chinese Medicine, Shanghai Research Institute of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032 China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No. 725, South Wanping Road, Shanghai, 200032 China
| |
Collapse
|
4
|
Steurer C, Eder N, Kerschbaum S, Wegrostek C, Gabriel S, Pardo N, Ortner V, Czerny T, Riegel E. HSF1 mediated stress response of heavy metals. PLoS One 2018; 13:e0209077. [PMID: 30566508 PMCID: PMC6300263 DOI: 10.1371/journal.pone.0209077] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/29/2018] [Indexed: 01/22/2023] Open
Abstract
The heat shock response (HSR) pathway is a highly conserved cellular stress response and mediated by its master regulator HSF1. Activation of the pathway results in the expression of chaperone proteins (heat shock proteins; HSP) to maintain protein homeostasis. One of the genes strongest upregulated upon stress is HSPA1A (HSP72). Heavy metals are highly toxic to living organisms and known as environmental contaminants, due to industrialisation. Furthermore, many of them are well-described inducers of the HSR pathway. Here we compare the effect of different heavy metals, concerning their potential to activate HSF1 with a sensitive artificial heat shock reporter cell line, consisting of heat shock elements (HSE). In general the responses of the artificial promoter to heavy metal stress were in good agreement with those of well-established HSF1 target genes, like HSPA1A. Nevertheless, differences were observable when effects of heat and heavy metal stress were compared. Whereas heat stress preferentially activated the HSE promoter, heavy metals more strongly induced the HSPA1A promoter. We therefore analysed the HSPA1A promoter in more detail, by isolating and mutating the HSEs. The results indicate that the importance of the individual binding sites for HSF1 is determined by their sequence similarity to the consensus sequence and their position relative to the transcription start site, but they were not differentially affected by heat or heavy metal stress. In contrast, we found that other parts of the HSPA1A promoter have different impact on the response under different stress conditions. In this work we provide deeper insights into the regulation of HSP72 expression as a well as a method to quantitatively and sensitively evaluate different stressor on their potential to activate HSF1.
Collapse
Affiliation(s)
- Christoph Steurer
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Noreen Eder
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Sarah Kerschbaum
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Christina Wegrostek
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Stefan Gabriel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Natalia Pardo
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Viktoria Ortner
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Thomas Czerny
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| | - Elisabeth Riegel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, Vienna, Austria
| |
Collapse
|
5
|
Liang X, Shi H, Yang L, Qiu C, Lin S, Qi Y, Li J, Zhao A, Liu J. Inhibition of polypyrimidine tract-binding protein 3 induces apoptosis and cell cycle arrest, and enhances the cytotoxicity of 5- fluorouracil in gastric cancer cells. Br J Cancer 2017; 116:903-911. [PMID: 28222070 PMCID: PMC5379144 DOI: 10.1038/bjc.2017.32] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Human polypyrimidine tract binding protein 3 (PTBP3) was first discovered in 1999 and has been well characterised as a differentiation regulator. However, its role in human cancer has rarely been reported. Our previous study revealed increased PTBP3 protein level in gastric cancer tissues. Downregulation of PTBP3 suppressed the proliferation and differentiation of gastric cancer cells in vivo. Methods: PTBP3 mRNA levels in human gastric cancer and adjuvant non-tumour tissues were detected. Apoptosis and 5-FU effect were determined in PTBP3-silenced gastric cancer cells. Underlying molecular mechanisms were investigated. Results: MRNA expression of PTBP3 was upregulated in gastric cancer tissues, especially in those at an advanced stage. PTBP3 silencing led to apoptosis, under which modulation of PTB and thereby switch of Bcl-x pre-mRNA splicing pattern might be an important mechanism. Further research found that inhibition of PTBP3 expression enhanced the chemosensitivity of gastric cancer cells towards 5-FU treatment. This was mediated by reduced expression of histone deacetylase 6 (HDAC6), which further inhibited the phosphorylation of Akt and the expression of thymidylate synthase (TYMS), the critical determinant of 5-FU cytotoxicity. Conclusions: PTBP3 might serve as a biomarker of gastric cancer or potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Xin Liang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Haiyang Shi
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Liyan Yang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Cen Qiu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Shengchao Lin
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Yingxue Qi
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, PO Box 268, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
6
|
Lei K, Du W, Lin S, Yang L, Xu Y, Gao Y, Xu B, Tan S, Xu Y, Qian X, Liang X, Liu J. 3B, a novel photosensitizer, inhibits glycolysis and inflammation via miR-155-5p and breaks the JAK/STAT3/SOCS1 feedback loop in human breast cancer cells. Biomed Pharmacother 2016; 82:141-50. [PMID: 27470349 DOI: 10.1016/j.biopha.2016.04.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
Compared to normal cells, most cancer cells produce ATP by glycolysis under aerobic conditions rather than via the tricarboxylic acid cycle (TCA). This study is intended to determine whether 3B, a novel photosensitizer, can inhibit glycolysis and inflammation in breast cancer cells. We showed that 3B had the ability to repress glucose consumption as well as the generation of ATP, lactate and lactate dehydrogenase. 3B-PDT not only inhibited the expression of IL-1β and IL-6 but also affected the JAK-STAT3 inflammatory pathway in vitro. The present study showed that 3B featured a significant inhibitory effect on the expression of microRNA-155-5p and SOCS1 might serve as a target gene. In vivo studies revealed that 3B inhibited tumor growth and exhibited almost no side effects. Therefore, through the anti-glycolytic effect and breakage of the JAK/STAT3/SOCS1 feedback loop via miR-155-5p, 3B may potentially serve as a potential therapeutic agent against breast cancer.
Collapse
Affiliation(s)
- Kecheng Lei
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Wenpei Du
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Shengchao Lin
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Liyan Yang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Yichun Xu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Yuwei Gao
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Baixue Xu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Shaoying Tan
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Yufang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China.
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, Shanghai, PR China.
| |
Collapse
|
7
|
Xu XL, Bao QC, Jia JM, Liu F, Guo XK, Zhang MY, Wei JL, Lu MC, Xu LL, Zhang XJ, You QD, Sun HP. CPUY201112, a novel synthetic small-molecule compound and inhibitor of heat shock protein Hsp90, induces p53-mediated apoptosis in MCF-7 cells. Sci Rep 2016; 6:19004. [PMID: 26743233 PMCID: PMC4705544 DOI: 10.1038/srep19004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
Heat-shock protein 90 (Hsp90) is highly expressed in many tumor cells and is associated with the maintenance of malignant phenotypes. Targeting Hsp90 has had therapeutic success in both solid and hematological malignancies, which has inspired more studies to identify new Hsp90 inhibitors with improved clinical efficacy. Using a fragment-based approach and subsequent structural optimization guided by medicinal chemistry principles, we identified the novel compound CPUY201112 as a potent Hsp90 inhibitor. It binds to the ATP-binding pocket of Hsp90 with a kinetic dissociation (Kd) constant of 27 ± 2.3 nM. It also exhibits potent in vitro antiproliferative effects in a range of solid tumor cells. In MCF-7 cells with high Hsp90 expression, CPUY201112 induces the degradation of Hsp90 client proteins including HER-2, Akt, and c-RAF. We prove that treating MCF-7 cells with CPUY201112 results in cell cycle arrest and apoptosis through the wild-type (wt) p53 pathway. CPUY201112 also synergizes with Nutlin-3a to induce cancer cell apoptosis. CPUY201112 significantly inhibited the growth of MCF-7 xenografts in nude mice without apparent body weight loss. These results demonstrate that CPUY201112 is a novel Hsp90 inhibitor with potential use in treating wild-type p53 related cancers.
Collapse
Affiliation(s)
- Xiao-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-chao Bao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian-Min Jia
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fang Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Ke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ming-ye Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jin-lian Wei
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng-chen Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Jin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao-Peng Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Zheng Y, Yin G, Le V, Zhang A, Chen S, Liang X, Liu J. Photodynamic-therapy Activates Immune Response by disrupting Immunity Homeostasis of Tumor Cells, which Generates Vaccine for Cancer Therapy. Int J Biol Sci 2016; 12:120-32. [PMID: 26722223 PMCID: PMC4679404 DOI: 10.7150/ijbs.12852] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/21/2015] [Indexed: 01/07/2023] Open
Abstract
Photodynamic therapy (PDT), a regulatory approved cancer treatment, is reported to be capable of causing immunogenic apoptosis. The current data reveal PDT can cause the dysregulation of “eat me” and “don't eat me” signal by generating reactive oxygen species (ROS) -mediated endoplasmic reticulum (ER) stress. This dysregulation probably contribute to the increased uptake of PDT-killed Lewis lung carcinoma (LLC) cells by homologous dendritic cells (DCs), accompanied by phenotypic maturation (CD80high, CD86high, and CD40high) and functional stimulation (NOhigh, IL-10absent) of dendritic cells as well as subsequent T-cell responses. Morevover, C57BL/6 mice vaccinated with dendritic cells (DCs) pulsed with PDT-treated LLCs (PDT-DCs) or PDT-treated LLCs alone (PDT-LLCs) exhibited potent immunity against LLC tumors. In the current study, the PDT-induced immune response was characterized as a process related with the dysregulation of “eat me” signal and “don't eat me” signal, revealing the possibility for developing PDT into an antitumor vaccination strategy for personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Yuanhong Zheng
- 1. State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | - Guifang Yin
- 1. State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | - Vanminh Le
- 1. State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | - Anle Zhang
- 1. State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | - Siyu Chen
- 2. Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P.R. China
| | - Xin Liang
- 1. State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | - Jianwen Liu
- 1. State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
9
|
Low dose photodynamic-therapy induce immune escape of tumor cells in a HIF-1α dependent manner through PI3K/Akt pathway. Int Immunopharmacol 2015; 28:44-51. [DOI: 10.1016/j.intimp.2015.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/04/2015] [Accepted: 05/18/2015] [Indexed: 12/30/2022]
|
10
|
Xu Y, Wang D, Zhuang Z, Jin K, Zheng L, Yang Q, Guo K. Hypericin-mediated photodynamic therapy induces apoptosis in K562 human leukemia cells through JNK pathway modulation. Mol Med Rep 2015; 12:6475-82. [PMID: 26330116 PMCID: PMC4626167 DOI: 10.3892/mmr.2015.4258] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 07/28/2015] [Indexed: 12/18/2022] Open
Abstract
Hypericin (Hyp) is traditionally used as an antidepressant and antiviral agent. It selectively accumulates in spheroids and is also used as a photosensitizer in the photodynamic therapy of cancer. The present study aimed to investigate the cytotoxic effect of Hyp-mediated photodynamic therapy (Hyp-PDT) on cell growth and apoptosis of K562 leukemia cells, and to examine the underlying mechanisms. Hyp-PDT was performed with different light intensities (0.1, 0.3 and 0.5 mW/cm2), different concentrations of Hyp (0, 0.2, 0.4 and 0.8 µg/ml) and different durations of irradiation (0, 2, 4 and 8 min) in order to select the optimal conditions for subsequent experiments. A concentration of 0.4 µg/ml Hyp with a 5 h drug-light interval and 4 min irradiation at 0.3 mW/cm2 light intensity was selected as the optimal conditions. The effects of Hyp-PDT on apoptosis were determined by detecting morphological changes under microscopy and by performing western blot analysis. The results revealed that Hyp-PDT suppressed cell viability in a light intensity-, dose- and irradiation duration-dependent manner. The expression levels of cleaved caspase-9, cleaved caspase-3 and phosphorylated-C-Jun N terminal kinase (JNK) l were significantly upregulated following Hyp-PDT. These results indicated that Hyp-PDT decreased cell viability and induced mitochondria-caspase-dependent apoptosis in the K562 cells through regulation of the JNK pathway. These findings suggest that Hyp-PDT may be developed as an effective treatment for leukemia.
Collapse
Affiliation(s)
- Yixiao Xu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Dexuan Wang
- Department of Pediatrics, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhizhi Zhuang
- Department of Pediatrics, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Keke Jin
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Lvzhen Zheng
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Qing Yang
- Department of Pediatrics, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Kunyuan Guo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
11
|
Zheng Y, Zou F, Wang J, Yin G, Le V, Fei Z, Liu J. Photodynamic therapy-mediated cancer vaccination enhances stem-like phenotype and immune escape, which can be blocked by thrombospondin-1 signaling through CD47 receptor protein. J Biol Chem 2015; 290:8975-86. [PMID: 25697354 PMCID: PMC4423687 DOI: 10.1074/jbc.m114.624965] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/17/2015] [Indexed: 01/11/2023] Open
Abstract
Like most of the strategies for cancer immunotherapy, photodynamic therapy-mediated vaccination has shown poor clinical outcomes in application. The aim of this study is to offer a glimpse at the mechanisms that are responsible for the failure based on cancer immuno-editing theory and to search for a positive solution. In this study we found that tumor cells were able to adapt themselves to the immune pressure exerted by vaccination. The survived tumor cells exhibited enhanced tumorigenic and stem-like phenotypes as well as undermined immunogenicity. Viewed as a whole, immune-selected tumor cells showed more malignant characteristics and the ability of immune escape, which might contribute to the eventual relapse. Thrombospondin-1 signaling via CD47 helped prevent tumor cells from becoming stem-like and rendered them vulnerable to immune attack. These findings prove that the TSP-1/CD47/SIRP-α signal axis is important to the evolution of tumor cells in the microenvironment of immunotherapy and identify thrombospondin-1 as a key signal with therapeutic benefits in overcoming long term relapse, providing new evidence for the clinical promise of cancer vaccination.
Collapse
Affiliation(s)
- Yuanhong Zheng
- From the Department of Molecular and Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China and
| | - Fangyuan Zou
- From the Department of Molecular and Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China and
| | - Jingjing Wang
- From the Department of Molecular and Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China and
| | - Guifang Yin
- From the Department of Molecular and Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China and
| | - Vanminh Le
- From the Department of Molecular and Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China and
| | - Zhewei Fei
- Department of General Surgery, Xinhua Hospital Chongming Branch, Shanghai Jiaotong University School of Medicine, 25 Nanmen Road, Chengqiaozhen, Chongming Shanghai, 202150, China
| | - Jianwen Liu
- From the Department of Molecular and Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China and
| |
Collapse
|
12
|
A novel class I histone deacetylase inhibitor, I-7ab, induces apoptosis and arrests cell cycle progression in human colorectal cancer cells. Biomed Pharmacother 2015; 71:70-8. [DOI: 10.1016/j.biopha.2015.02.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/15/2015] [Indexed: 12/18/2022] Open
|
13
|
3B, a novel of photosensitizer, exhibited anti-tumor effects via mitochondrial apoptosis pathway in MCF-7 human breast carcinoma cells. Tumour Biol 2015; 36:5597-606. [DOI: 10.1007/s13277-015-3231-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/05/2015] [Indexed: 10/23/2022] Open
|
14
|
Lin S, Zhang L, Lei K, Zhang A, Liu P, Liu J. Development of a multifunctional luciferase reporters system for assessing endoplasmic reticulum-targeting photosensitive compounds. Cell Stress Chaperones 2014; 19:927-37. [PMID: 24984699 PMCID: PMC4389854 DOI: 10.1007/s12192-014-0517-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/24/2014] [Accepted: 04/27/2014] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a recently developed antitumor modality utilizing the generation of reactive oxygen species (ROS), through light irradiation of photosensitizers (PSs) localized in tumor. Interference with proper functioning of endoplasmic reticulum (ER) by ER-targeting PDT is a newly proposed strategy to achieve tumor cell death. The aim of this study is to establish a multifunctional model to screen and assess ER-targeting PSs based on luciferase reporters system. Upregulation of GRP78 is a biomarker for the onset of ER stress. CHOP is a key initiating player in ER stress-induced cell death. Here, the most sensitive fragments of GRP78 and CHOP promoters responding to ER-targeting PDT were mapped and cloned into pGL3-basic vector, forming -702/GRP78-Luc and -443/CHOP-Luc construct, respectively. We demonstrated that -702/GRP78-Luc expression can be used to indicate the ER-targeting of PSs, meanwhile estimate the ROS level induced by low-dose ER-targeting PDT. Moreover, the luciferase signaling of -443/CHOP-Luc showed highly consistence with apoptosis rate caused by ER-targeting PDT, suggesting that -443/CHOP-Luc can evaluate the antitumor properties of PSs. Hypericin, Foscan® and methylene blue were applied to verify the sensitivity and reliability of our model. These results proved that GRP78-CHOP model may be suitable to screen ER-targeting photosensitive compounds with lower cost and higher sensitivity than traditional ways.
Collapse
Affiliation(s)
- Shengchao Lin
- />Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Lingling Zhang
- />Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Kecheng Lei
- />Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Anle Zhang
- />Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Ping Liu
- />Longhua Hospital Affiliated to Shanghai University of traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032 People’s Republic of China
| | - Jianwen Liu
- />Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| |
Collapse
|
15
|
Sun HP, Jia JM, Jiang F, Xu XL, Liu F, Guo XK, Cherfaoui B, Huang HZ, Pan Y, You QD. Identification and optimization of novel Hsp90 inhibitors with tetrahydropyrido[4,3-d]pyrimidines core through shape-based screening. Eur J Med Chem 2014; 79:399-412. [DOI: 10.1016/j.ejmech.2014.03.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 12/14/2022]
|
16
|
Di Renzo L, Carraro A, Valente R, Iacopino L, Colica C, De Lorenzo A. Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: a randomized crossover trial. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:681318. [PMID: 24876915 PMCID: PMC4021682 DOI: 10.1155/2014/681318] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 12/31/2022]
Abstract
Several studies have found that adherence to the Mediterranean Diet, including consumption of red wine, is associated with beneficial effects on oxidative and inflammatory conditions. We evaluate the outcome of consumption of a McDonald's Meal (McD) and a Mediterranean Meal (MM), with and without the additive effect of red wine, in order to ascertain whether the addition of the latter has a positive impact on oxidized (ox-) LDL and on expression of oxidative and inflammatory genes. A total of 24 subjects were analyzed for ox-LDL, CAT, GPX1, SOD2, SIRT2, and CCL5 gene expression levels, before and after consumption of the 4 different meal combinations with washout intervals between each meal. When red wine is associated with McD or MM, values of ox-LDL are lowered (P < 0.05) and expression of antioxidant genes is increased, while CCL5 expression is decreased (P < 0.05). SIRT2 expression after MM and fasting with red wine is significantly correlated with downregulation of CCL5 and upregulation of CAT (P < 0.001). GPX1 increased significantly in the comparison between baseline and all conditions with red wine. We highlighted for the first time the positive effect of red wine intake combined with different but widely consumed meal types on ox-LDL and gene expression. Trial Registration. This trial is registered with ClinicalTrials.gov NCT01890070.
Collapse
Affiliation(s)
- Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00136 Roma, Italy
| | - Alberto Carraro
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00136 Roma, Italy
| | - Roberto Valente
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00136 Roma, Italy
| | - Leonardo Iacopino
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00136 Roma, Italy
| | - Carmen Colica
- CNR, ISN UOS of Pharmacology, Department of Pharmacology, University Magna Graecia, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00136 Roma, Italy
- National Institute for Mediterranean Diet and Nutrigenomics (I.N.Di.M.), Corso Vittorio Emanuele 4, 87032 Amantea, Italy
| |
Collapse
|
17
|
Xu XL, Sun HP, Liu F, Jia JM, Guo XK, Pan Y, Huang HZ, Zhang XJ, You QD. Discovery and Bioevaluation of Novel Pyrazolopyrimidine Analogs as Competitive Hsp90 Inhibitors Through Shape-Based Similarity Screening. Mol Inform 2014; 33:293-306. [PMID: 27485776 DOI: 10.1002/minf.201300150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 02/13/2014] [Indexed: 12/14/2022]
Abstract
Hsp90 as a promising therapeutic target for the treatment of cancer has received great attention. Many Hsp90 inhibitors such as BIIB021 and CUDC-305 have been in clinical. In this paper shape-based similarity screening through ROCS overlays on the basis of CUDC-305, BIIB021, PU-H71 and PU-3 were performed to discover HSP90 inhibitors. A set of 19 novel pyrazolopyrimidine analogues was identified and evaluated on enzyme level and cell-based level as Hsp90 inhibitors. The compound HDI4-04 with IC50 0.35 µM in the Hsp90 ATP hydrolysis assay exhibited potent cytotoxicity against five human cancer cell lines. Western blot analysis and Hsp70 luciferase reporter assay further confirmed that HDI4-04 targeted the Hsp90 protein folding machinery. And according to the biological assay, the SAR was discussed and summarized, which will guide us for further optimization of these compounds.
Collapse
Affiliation(s)
- Xiao-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hao-Peng Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271216
| | - Fang Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian-Min Jia
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiao-Ke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yang Pan
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hao-Ze Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiao-Jin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351. , .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China. , .,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271216. ,
| |
Collapse
|
18
|
Zheng Y, Yin G, Le V, Zhang A, Lu Y, Yang M, Fei Z, Liu J. Hypericin-based Photodynamic Therapy Induces a Tumor-Specific Immune Response and an Effective DC-based cancer Immunotherapy. Biochem Pharmacol 2014:S0006-2952(14)00075-6. [PMID: 24508834 DOI: 10.1016/j.bcp.2014.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 02/08/2023]
Abstract
In our study, we find that photodynamic therapy (PDT), which generates reactive oxygen species (ROS) -mediated endoplasmic reticulum (ER) stress to inflict trauma in the targeted lesion, can break the balance between membrane damage-associated molecular patterns (DAMPs) and integrin-associated protein (CD47). The imbalance undermines the ability of lewis lung carcinoma (LLC) cells to escape immune attack by increasing the uptake of hypericin-mediated PDT(hyp-PDT) killed lewis lung carcinoma (LLC) cells by homologous dendritic cells (DCs), accompanied by phenotypic maturation (CD80high, CD86high, and CD40high) and functional stimulation (NOhigh, IL-10absent) of dendritic cells as well as subsequent T-cell response. Besides, C57BL/6 mice vaccinated with dendritic cells (DCs) pulsed with PDT-treated LLCs (PDT-DCs) or PDT-treated LLCs alone (PDT-LLCs) show potent immunity against LLC tumor. These data identify hypericin-induced PDT as a strong inducer of immunogenic apoptosis, providing an antitumor vaccination strategy for personalized cancer Immunotherapy.
Collapse
Affiliation(s)
- Yuanhong Zheng
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | - Guifang Yin
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | - Vanminh Le
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | - Anle Zhang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | - Yanhua Lu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China
| | - Muqing Yang
- Department of General Surgery, Xinhua Hospital Chongming Branch, Shanghai Jiaotong University School of Medicine, 25 Nanmen Rd, Chengqiaozhen, Chongming Shanghai, 202150, PR China
| | - Zhewei Fei
- Department of General Surgery, Xinhua Hospital Chongming Branch, Shanghai Jiaotong University School of Medicine, 25 Nanmen Rd, Chengqiaozhen, Chongming Shanghai, 202150, PR China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
19
|
Renzo LD, Carraro A, Minella D, Botta R, Contessa C, Sartor C, Iacopino AM, Lorenzo AD. Nutrient Analysis Critical Control Point (NACCP): Hazelnut as a Prototype of Nutrigenomic Study. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/fns.2014.51011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|