1
|
Liu J, Guo M, Fan X. Ethanol induces necroptosis in gastric epithelial cells in vitro. J Food Biochem 2021; 45:e13692. [PMID: 33686694 DOI: 10.1111/jfbc.13692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/27/2022]
Abstract
The stomach frequently suffers from acute gastric diseases after excessive ingestion of high-concentration alcoholic beverages, but little is known about the pathological mechanism by which ethanol affects the gastric mucosa. The aim of this study was to explore the mechanism of gastric epithelial cell death induced by relatively high concentrations of ethanol in vitro. Ethanol was demonstrated to induce rapid cell death in a concentration-dependent manner (Spearman r = .943, p = .017) and to activate the phosphorylation of key mediators in necroptosis pathway without influencing the key mediators in apoptosis pathway. The receptor-interacting serine-threonine kinase 1 (RIP1) kinase inhibitor necrostatin-1s (nec-1s) was found to reverse necroptotic cell death (from 65.5% necrosis to 35.8% necrosis, p = .006) and to inhibit the formation of necrosome complexes. These results indicate necroptosis rather than apoptosis pathway is an essential mechanism and is a novel therapeutic target in acute alcoholic gastric diseases. PRACTICAL APPLICATIONS: Alcohol consumption is related with a variety of diseases in many organs, but its pathological mechanism might be quite different due to the exposure extent between the stomach and other organs. Although there have been plenty of studies on alcoholic liver diseases and those in other organs, the pathological mechanism of alcoholic gastric diseases has been poorly investigated. Considering the unique distribution of ethanol on gastric mucosa, it is worthwhile to explore the specific cell death pattern of gastric epithelial cells under high-concentration ethanol treatment. Further investigation of the mechanisms of alcoholic gastric diseases would provide potential therapeutic strategies for the treatment of acute alcoholic gastric diseases as well as other acute alcoholic diseases.
Collapse
Affiliation(s)
- Jianning Liu
- State Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China.,Xi'an Gaoxin No. 1 High School, Xi'an, China
| | - Meng Guo
- State Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
| | - Xiaotong Fan
- State Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, China
| |
Collapse
|
2
|
Harnessing the Proteostasis Network in Alcohol-associated Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2020. [DOI: 10.1007/s40139-020-00211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Abstract
Hepatic lipid metabolism is a series of complex processes that control influx and efflux of not only hepatic lipid pools, but also organismal pools. Lipid homeostasis is usually tightly controlled by expression, substrate supply, oxidation and secretion that keep hepatic lipid pools relatively constant. However, perturbations of any of these processes can lead to lipid accumulation in the liver. Although it is thought that these responses are hepatic arms of the 'thrifty genome', they are maladaptive in the context of chronic fatty liver diseases. Ethanol is likely unique among toxins, in that it perturbs almost all aspects of hepatic lipid metabolism. This complex response is due in part to the large metabolic demand placed on the organ by alcohol metabolism, but also appears to involve more nuanced changes in expression and substrate supply. The net effect is that steatosis is a rapid response to alcohol abuse. Although transient steatosis is largely an inert pathology, the chronicity of alcohol-related liver disease seems to require steatosis. Better and more specific understanding of the mechanisms by which alcohol causes steatosis may therefore translate into targeted therapies to treat alcohol-related liver disease and/or prevent its progression.
Collapse
|
4
|
Girard PM, Peynot N, Lelièvre JM. Differential correlations between changes to glutathione redox state, protein ubiquitination, and stress-inducible HSPA chaperone expression after different types of oxidative stress. Cell Stress Chaperones 2018; 23:985-1002. [PMID: 29754332 PMCID: PMC6111089 DOI: 10.1007/s12192-018-0909-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 04/04/2018] [Accepted: 05/01/2018] [Indexed: 01/03/2023] Open
Abstract
In primary bovine fibroblasts with an hspa1b/luciferase transgene, we examined the intensity of heat-shock response (HSR) following four types of oxidative stress or heat stress (HS), and its putative relationship with changes to different cell parameters, including reactive oxygen species (ROS), the redox status of the key molecules glutathione (GSH), NADP(H) NAD(H), and the post-translational protein modifications carbonylation, S-glutathionylation, and ubiquitination. We determined the sub-lethal condition generating the maximal luciferase activity and inducible HSPA protein level for treatments with hydrogen peroxide (H2O2), UVA-induced oxygen photo-activation, the superoxide-generating agent menadione (MN), and diamide (DA), an electrophilic and sulfhydryl reagent. The level of HSR induced by oxidative stress was the highest after DA and MN, followed by UVA and H2O2 treatments, and was not correlated to the level of ROS production nor to the extent of protein S-glutathionylation or carbonylation observed immediately after stress. We found a correlation following oxidative treatments between HSR and the level of GSH/GSSG immediately after stress, and the increase in protein ubiquitination during the recovery period. Conversely, HS treatment, which led to the highest HSR level, did not generate ROS nor modified or depended on GSH redox state. Furthermore, the level of protein ubiquitination was maximum immediately after HS and lower than after MN and DA treatments thereafter. In these cells, heat-induced HSR was therefore clearly different from oxidative stress-induced HSR, in which conversely early redox changes of the major cellular thiol predicted the level of HSR and polyubiquinated proteins.
Collapse
Affiliation(s)
- Pierre-Marie Girard
- Institut Curie, PSL Research University, CNRS UMR3347, INSERM U1021, 91405, Orsay, France
- Université Paris-Sud, Université Paris-Saclay, Rue Georges Clémenceau, 91405, Orsay, France
| | - Nathalie Peynot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Marc Lelièvre
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy-en-Josas, France.
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
5
|
Shenkman BS, Belova SP, Zinovyeva OE, Samkhaeva ND, Mirzoev TM, Vilchinskaya NA, Altaeva EG, Turtikova OV, Kostrominova TY, Nemirovskaya TL. Effect of Chronic Alcohol Abuse on Anabolic and Catabolic Signaling Pathways in Human Skeletal Muscle. Alcohol Clin Exp Res 2017; 42:41-52. [PMID: 29044624 DOI: 10.1111/acer.13531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Animal studies showed that alcoholic myopathy is characterized by the reduction in myofiber cross-sectional area (CSA) and by impaired anabolic signaling. The goal of this study was to compare changes in CSA and fiber type composition with modifications in anabolic and catabolic signaling pathways at the early stages of alcohol misuse in humans. METHODS Skeletal muscle samples from 7 male patients with chronic alcohol abuse (AL; 47.7 ± 2.0 years old; alcohol misuse duration 7.7 ± 0.6 years) were compared with muscle from a control group of 7 healthy men (C; 39.7 ± 5.0 years old). Biopsies from vastus lateralis muscles were taken and analyzed for the changes in fiber type composition, fiber CSA, and for the alterations in anabolic and catabolic signaling pathways. RESULTS AL patients did not have detectable clinical myopathy symptoms or muscle fiber atrophy, but the relative proportion of fast fibers was increased. There was a significant decrease in IGF-1 in plasma and IRS-1 protein content in muscle of AL group. Levels of total and phosphorylated p70S6K1, GSK3β, and p90RSK1 were not different between AL and C groups. Muscle of AL patients had increased mRNA expression of HSP70 and HSP90. A marker of anabolic pathway p-4E-BP1 was decreased, while catabolic markers (MuRF-1, MAFbx, ubiquitinated proteins) were increased in AL patients when compared with C group. CONCLUSIONS At the early stages of alcohol misuse in humans, changes in the regulation of anabolic and catabolic signaling pathways precede the development of skeletal muscle atrophy and manifestation of clinical symptoms of alcoholic myopathy.
Collapse
Affiliation(s)
| | | | - Olga E Zinovyeva
- Sechenov First Moscow State Medical University, Russian Ministry of Health, Moscow, Russia
| | - Nudlya D Samkhaeva
- Sechenov First Moscow State Medical University, Russian Ministry of Health, Moscow, Russia
| | | | | | | | | | - Tatiana Y Kostrominova
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Northwest, Gary, Indiana
| | - Tatiana L Nemirovskaya
- Institute of Biomedical Problems, RAS, Moscow, Russia.,Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Steiner JL, Lang CH. Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. Int J Biochem Cell Biol 2017; 89:125-135. [PMID: 28606389 DOI: 10.1016/j.biocel.2017.06.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022]
Abstract
Putative mechanisms leading to the development of alcoholic cardiomyopathy (ACM) include the interrelated cellular processes of mitochondria metabolism, oxidative stress and apoptosis. As mitochondria fuel the constant energy demands of this continually contracting tissue, it is not surprising that alcohol-induced molecular changes in this organelle contribute to cardiac dysfunction and ACM. As the causal relationship of these processes with ACM has already been established, the primary objective of this review is to provide an update of the experimental findings to more completely understand the aforementioned mechanisms. Accordingly, recent data indicate that alcohol impairs mitochondria function assessed by membrane potential and respiratory chain activity. Indictors of oxidative stress including superoxide dismutase, glutathione metabolites and malondialdehyde are also adversely affected by alcohol oftentimes in a sex-dependent manner. Additionally, myocardial apoptosis is increased based on assessment of TUNEL staining and caspase activity. Recent work has also emerged linking alcohol-induced oxidative stress with apoptosis providing new insight on the codependence of these interrelated mechanisms in ACM. Attention is also given to methodological differences including the dose of alcohol, experimental model system and the use of males versus females to highlight inconsistencies and areas that would benefit from establishment of a consistent model.
Collapse
Affiliation(s)
- Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, United States.
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, United States.
| |
Collapse
|
7
|
Chen Y, Islam A. Transgenic sickle cell trait mice do not exhibit abnormal thermoregulatory and stress responses to heat shock exposure. Blood Cells Mol Dis 2016; 59:124-8. [PMID: 27282581 DOI: 10.1016/j.bcmd.2016.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 01/09/2023]
Abstract
There remains controversy over whether individuals with sickle cell trait (SCT) are vulnerable to health risks during physical activity in high temperatures. We examined thermoregulatory and stress-related responses to heat exposure in SCT and wild-type (WT) mice. No significant differences in core temperature (Tc) were observed between SCT and WT mice during heat exposure. There was no correlation between peak Tc during heat exposure and levels of hemoglobin S in SCT mice. Basal levels of circulating inflammatory and stress-related markers were not significantly different between SCT and WT mice. Although heat exposure caused significant increases in plasma interleukins 1β and 6, and 8-isoprostane in SCT and WT mice, no differences were found between SCT and WT mice with similar thermal response profiles during heat exposure. SCT mice had significantly higher expression of heat shock protein 72 in heart, liver and gastrocnemius muscle than WT mice under control and post-heat conditions. In conclusion, there is neither thermoregulatory dysfunction nor abnormal stress-related response in SCT mice exposed to moderate heat. The hemoglobin variant in mice is associated with altered tissue stress protein homeostasis.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Aminul Islam
- Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
8
|
Muralidharan S, Ambade A, Fulham MA, Deshpande J, Catalano D, Mandrekar P. Moderate alcohol induces stress proteins HSF1 and hsp70 and inhibits proinflammatory cytokines resulting in endotoxin tolerance. THE JOURNAL OF IMMUNOLOGY 2014; 193:1975-87. [PMID: 25024384 DOI: 10.4049/jimmunol.1303468] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Binge or moderate alcohol exposure impairs host defense and increases susceptibility to infection because of compromised innate immune responses. However, there is a lack of consensus on the molecular mechanism by which alcohol mediates this immunosuppression. In this study, we show that cellular stress proteins HSF1 and hsp70 play a mechanistic role in alcohol-mediated inhibition of the TLR4/MyD88 pathway. Alcohol exposure induced transcription factor HSF1 mRNA expression and DNA binding activity in primary human monocytes and murine macrophages. Furthermore, HSF1 target gene hsp70 mRNA and protein are upregulated by alcohol in monocytes. In vitro pre-exposure to moderate alcohol reduced subsequent LPS-induced NF-κB promoter activity and downstream TNF-α, IL-6 and IL-1β production in monocytes and macrophages, exhibiting endotoxin tolerance. Mechanistic analysis demonstrates that alcohol-induced HSF1 binds to the TNF-α promoter in macrophages at early time points, exerting transrepression and decreased TNF-α expression. Furthermore, association of hsp70 with NF-κB subunit p50 in alcohol-treated macrophages correlates with reduced NF-κB activation at later time points. Hsp70 overexpression in macrophages was sufficient to block LPS-induced NF-κB promoter activity, suggesting alcohol-mediated immunosuppression by hsp70. The direct crosstalk of hsp70 and HSF1 was further confirmed by the loss of alcohol-mediated endotoxin tolerance in hsp70- and HSF1-silenced macrophages. Our data suggest that alcohol-mediated activation of HSF1 and induction of hsp70 inhibit TLR4-MyD88 signaling and are required for alcohol-induced endotoxin tolerance. Using stress proteins as direct drug targets would be clinically relevant in alcohol abuse treatment and may serve to provide a better understanding of alcohol-mediated immunosuppression.
Collapse
Affiliation(s)
- Sujatha Muralidharan
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Aditya Ambade
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Melissa A Fulham
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Janhavee Deshpande
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
9
|
Tóth ME, Vígh L, Sántha M. Alcohol stress, membranes, and chaperones. Cell Stress Chaperones 2014; 19:299-309. [PMID: 24122554 PMCID: PMC3982023 DOI: 10.1007/s12192-013-0472-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 12/28/2022] Open
Abstract
Ethanol, which affects all body organs, exerts a number of cytotoxic effects, most of them independent of cell type. Ethanol treatment leads to increased membrane fluidity and to changes in membrane protein composition. It can also interact directly with membrane proteins, causing conformational changes and thereby influencing their function. The cytotoxic action may include an increased level of oxidative stress. Heat shock protein molecular chaperones are ubiquitously expressed evolutionarily conserved proteins which serve as critical regulators of cellular homeostasis. Heat shock proteins can be induced by various forms of stresses such as elevated temperature, alcohol treatment, or ischemia, and they are also upregulated in certain pathological conditions. As heat shock and ethanol stress provoke similar responses, it is likely that heat shock protein activation also has a role in the protection of membranes and other cellular components during alcohol stress.
Collapse
Affiliation(s)
- Melinda E. Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| |
Collapse
|