1
|
Zhang Y, Lu S, Fan S, Xu L, Jiang X, Wang K, Cai B. Macrophage migration inhibitory factor activates the inflammatory response in joint capsule fibroblasts following post-traumatic joint contracture. Aging (Albany NY) 2021; 13:5804-5823. [PMID: 33601337 PMCID: PMC7950233 DOI: 10.18632/aging.202505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Objectives: Joint capsule fibrosis caused by excessive inflammation leading to post-traumatic joint contracture (PTJC). Fibroblasts trigger inflammation under the challenge of various proinflammatory cytokines. Macrophage migration inhibitory factor (MIF) is a prominent proinflammatory cytokine involved in inflammation- and fibrosis-associated pathophysiology, we investigated the role of MIF in PTJC. Methods: Using rat PTJC model and fibroblast inflammation model, we detected MIF expression in posterior joint capsule. Primary joint capsule fibroblasts (JFs) were used to investigate the effects of MIF on cell proliferation, migration and proinflammatory cytokines production. The mechanism of JF-mediated events was evaluated by qRT-PCR, western blot and immunoprecipitation. We screened the mRNA expression profile to identify gene candidates that mediate the effect of MIF on JFs. Results: MIF increased in posterior joint capsule following PTJC and co-localized with fibroblasts. Injection of MIF inhibitor significantly suppressed joint capsule inflammation and fibrosis. In vitro, MIF promoted JF proliferation, migration, and inflammation by regulating mitogen-activated protein kinase/nuclear factor-κB pathway through coupling with CD74. Transcriptome analysis revealed that lipid metabolism-related factors Pla2g2a, Angptl4, and Sgpp2, downstream of MIF/CD74, were potentially implicated in JF inflammation. Conclusion: MIF/CD74 axis elicited JF inflammation and may provide new therapeutic targets for joint capsule fibrosis in PTJC.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shenji Lu
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shuai Fan
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lili Xu
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xin Jiang
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kexin Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Bin Cai
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
2
|
Wang MM, Feng YS, Xing Y, Dong F, Zhang F. Mechanisms involved in the arthrofibrosis formation and treatments following bone fracture. J Back Musculoskelet Rehabil 2020; 32:947-954. [PMID: 31403938 DOI: 10.3233/bmr-191499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Arthrofibrosis is a common complication for patients with bone fracture following external and internal fixation. In this review, we summarize the related factors and significant pathways for joint adhesion following fracture surgery. Moreover, the different types of treatments and related preventive measures are also discussed. Many factors related to the development and treatment of arthrofibrosis are discussed in this review in order to provide possible clues for the prospective targets to develop new medication or treatments for preventing or reducing the joint adhesion following orthopedic surgery.
Collapse
Affiliation(s)
- Man-Man Wang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Ya-Shuo Feng
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China.,Hebei Provincial Orthopedic Biomechanics key laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
3
|
Yi X, Wang Z, Ren J, Zhuang Z, Liu K, Wang K, He R. Overexpression of chaperonin containing T-complex polypeptide subunit zeta 2 (CCT6b) suppresses the functions of active fibroblasts in a rat model of joint contracture. J Orthop Surg Res 2019; 14:125. [PMID: 31072365 PMCID: PMC6507144 DOI: 10.1186/s13018-019-1161-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/22/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Joint contracture is a fibrous disease characterized as joint capsule fibrosis that results in joint dysfunction and disability. The purpose of this study was to analyze the biological activities of chaperonin containing T-complex polypeptide (CCT) subunits and to determine the role of CCT chaperone in joint contracture in a rat model. METHODS In this study, the rat model of joint contracture was established by immobilizing the rat knee for 8 weeks. Then, fibroblasts were isolated from the posterior joint capsule and were cultured for functional analysis such as qRT-PCR, Western blot, transwell assay, and collagen assay. The effect of CCT subunit was determined by employing a lentivirus containing target gene and transfecting it into fibroblasts. RESULTS Results of qRT-PCR and Western blot showed that among all CCT subunits, CCT6b significantly decreased in the fibroblasts from contractive joints compared to cells from normal joints (p < 0.05). Overexpression of CCT6b by transfection of lentivirus containing CCT6b gene to active fibroblasts significantly inhibited fibrous marker (α-SMA, COL-1) expressions, fibroblast migration, and collagen synthesis (all p < 0.05). Moreover, fibrosis-related chaperone CCT7 expression was decreased with CCT6b overexpression (p < 0.05). CONCLUSION The biological activities of CCT subunits in fibroblasts from the joint contracture rat model were analyzed in this study. CCT6b significantly decreased in the active fibroblasts, and overexpression of CCT6b significantly inhibited fibroblast functions. These findings indicate that CCT6b appears to be a potential molecular biomarker and therapeutic target for the novel therapies of joint contracture.
Collapse
Affiliation(s)
- Xiaoyou Yi
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510000 China
| | - Zhe Wang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510000 China
| | - Jianhua Ren
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510000 China
| | - Ze Zhuang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510000 China
| | - Kaihua Liu
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510000 China
| | - Kun Wang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510000 China
| | - Ronghan He
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No.600 Tianhe Road, Tianhe District, Guangzhou, 510000 China
| |
Collapse
|
4
|
Endoplasmic reticulum stress-dependent ROS production mediates synovial myofibroblastic differentiation in the immobilization-induced rat knee joint contracture model. Exp Cell Res 2018; 369:325-334. [PMID: 29856991 DOI: 10.1016/j.yexcr.2018.05.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/25/2023]
Abstract
Joint contracture is a common complication for people with joint immobility that involves fibrosis structural alteration in the joint capsule. Considering that endoplasmic reticulum (ER) stress plays a prominent role in the promotion of tissue fibrosis, we investigated whether the unfolded protein response (UPR) contributes to the fibrotic development in immobilization-induced knee joint contractures. Using a non-traumatic rat knee joint contracture model, twelve female Sprague-Dawley rats received knee joint immobilization for a period of 8 weeks. We found that fibrosis protein markers (type I collagen, α-SMA) and UPR (GRP78, ATF6α, XBP1s) markers were parallelly upregulated in rat primary cultured synovial myofibroblasts. In the same cell types, pre-treatment with an ER stress inhibitor, 4-phenylbutyric acid (4-PBA), not only abrogated cytokine TGFβ1 stimulation but also reduced the protein level of UPR. Additionally, high reactive oxygen species (ROS) generation was detected in synovial myofibroblasts through flow cytometry, as expected. Notably, TGFβ1-induced UPR was significantly reduced through the inhibition of ROS with antioxidants. These data suggest that ER stress act as a pro-fibrotic stimulus through the overexpression of ROS in synovial fibroblasts. Interestingly, immunohistochemical results showed an increase in the UPR protein levels both in human acquired joint contractures capsule tissue and in animal knee joint contracture tissue. Together, our findings suggest that ER stress contributes to synovial myofibroblastic differentiation in joint capsule fibrosis and may also serve as a potential therapeutic target in joint contractures.
Collapse
|
5
|
Baranowski A, Schlemmer L, Förster K, Mattyasovszky SG, Ritz U, Wagner D, Rommens PM, Hofmann A. A novel rat model of stable posttraumatic joint stiffness of the knee. J Orthop Surg Res 2018; 13:185. [PMID: 30045767 PMCID: PMC6060505 DOI: 10.1186/s13018-018-0894-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/17/2018] [Indexed: 11/25/2022] Open
Abstract
Background Animal models of posttraumatic joint stiffness (PTJS) are helpful in understanding underlying mechanisms, which is important for developing specific treatments and prophylactic therapies. Existing rat models of PTJS in the knee failed to show that the created contracture does not resolve through subsequent remobilization. Our objective was to establish a rat model of persisting PTJS of the knee and compare it to existing models. Methods Thirty skeletally immature male Sprague Dawley rats underwent surgical intervention with knee hyperextension, extracartilaginous femoral condyle defect, and Kirschner (K)-wire transfixation for 4 weeks with the knee joint in 146.7° ± 7.7° of flexion (n = 10 per group, groups I–III). After K-wire removal, group I underwent joint angle measurements and group II and group III were allowed for 4 or 8 weeks of free cage activity, respectively, before joint angles were measured. Eighteen rats (n = 6 per group, groups Ic–IIIc) served as untreated control. Results Arthrogenic contracture was largest in group I (55.2°). After 4 weeks of remobilization, the contracture decreased to 25.7° in group II (p < 0.05 vs. group I), whereas 8 weeks of remobilization did not reduce the contracture significantly (group III, 26.5°, p = 0.06 vs. group I). Between 4 and 8 weeks of remobilization, no increase in extension (26.5° in group III, p = 0.99 vs. group II) was observed. Interestingly, muscles did not contribute to the development of contracture. Conclusion In our new rat model of PTJS of the knee joint, we were able to create a significant joint contracture with an immobilization time of only 4 weeks after trauma. Remobilization of up to 8 weeks alone did not result in full recovery of the range of motion. This model represents a powerful tool for further investigations on prevention and treatment of PTJS. Future studies of our group will use this new model to analyze medical treatment options for PTJS.
Collapse
Affiliation(s)
- Andreas Baranowski
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - Ludwig Schlemmer
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katharina Förster
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Stefan G Mattyasovszky
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Daniel Wagner
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Pol M Rommens
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany.,Department of Traumatology and Orthopaedics 1, Westpfalz-Medical Centre Kaiserslautern, Hellmut-Hartert-Str 1, 67655, Kaiserslautern, Germany
| |
Collapse
|
6
|
Zubieta MP, Contesini FJ, Rubio MV, Gonçalves AEDSS, Gerhardt JA, Prade RA, Damasio ARDL. Protein profile in Aspergillus nidulans recombinant strains overproducing heterologous enzymes. Microb Biotechnol 2018; 11:346-358. [PMID: 29316319 PMCID: PMC5812239 DOI: 10.1111/1751-7915.13027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 01/01/2023] Open
Abstract
Filamentous fungi are robust cell factories and have been used for the production of large quantities of industrially relevant enzymes. However, the production levels of heterologous proteins still need to be improved. Therefore, this article aimed to investigate the global proteome profiling of Aspergillus nidulans recombinant strains in order to understand the bottlenecks of heterologous enzymes production. About 250, 441 and 424 intracellular proteins were identified in the control strain Anid_pEXPYR and in the recombinant strains Anid_AbfA and Anid_Cbhl respectively. In this context, the most enriched processes in recombinant strains were energy pathway, amino acid metabolism, ribosome biogenesis, translation, endoplasmic reticulum and oxidative stress, and repression under secretion stress (RESS). The global protein profile of the recombinant strains Anid_AbfA and Anid_Cbhl was similar, although the latter strain secreted more recombinant enzyme than the former. These findings provide insights into the bottlenecks involved in the secretion of recombinant proteins in A. nidulans, as well as in regard to the rational manipulation of target genes for engineering fungal strains as microbial cell factories.
Collapse
Affiliation(s)
- Mariane Paludetti Zubieta
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Fabiano Jares Contesini
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Marcelo Ventura Rubio
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | | | - Jaqueline Aline Gerhardt
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Rolf Alexander Prade
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOKUSA
| | | |
Collapse
|
7
|
He R, Lu Y, Ren J, Wang Z, Huang J, Zhu L, Wang K. Decreased fibrous encapsulation and enhanced osseointegration in vitro by decorin-modified titanium surface. Colloids Surf B Biointerfaces 2017; 155:17-24. [DOI: 10.1016/j.colsurfb.2017.03.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 01/01/2023]
|