1
|
Tan S, Li G, Guo H, Li H, Tian M, Liu Q, Wang Y, Xu B, Guo X. Identification of the cuticle protein AccCPR2 gene in Apis cerana cerana and its response to environmental stress. INSECT MOLECULAR BIOLOGY 2022; 31:634-646. [PMID: 35619242 DOI: 10.1111/imb.12792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Cuticular proteins (CPs) are known to play important roles in insect development and defence responses. The loss of CP genes can lead to changes in insect morphology and sensitivity to the external environment. In this study, we identified the AccCPR2 gene, which belongs to the CPR family (including the R&R consensus motif) of CPs, and explored its function in the response of Apis cerana cerana to adverse external stresses. Our results demonstrated that AccCPR2 was highly expressed in the late pupal stage and epidermis, and the expression of AccCPR2 may be induced or inhibited under different stressors. RNA interference experiments showed that knockdown of AccCPR2 reduced the activity of antioxidant enzymes, led to the accumulation of oxidative damage and suppressed the expression of several antioxidant genes. In addition, knockdown of AccCPR2 also reduced the pesticide resistance of A. cerana cerana. The overexpression of AccCPR2 in a prokaryotic system further confirmed its role in resistance to various stresses. In summary, AccCPR2 may play pivotal roles in the normal development and environmental stress response of A. cerana cerana. This study also enriched the theoretical knowledge of the resistance biology of bees.
Collapse
Affiliation(s)
- Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu, P. R. China
| | - Hengjun Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Ming Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| |
Collapse
|
2
|
Peng H, Guo D, Shan W, Liu Z, Wang H, Ma L, Xu B, Guo X. Identification of the AccCDK1 gene in Apis cerana cerana and its relationship with the oxidative stress response. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105048. [PMID: 35249658 DOI: 10.1016/j.pestbp.2022.105048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/16/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The cyclin-dependent kinase (CDK) protein family plays an important role in regulating life functions, such as the cell cycle and metabolism. This study reports the first cloning and functional analysis of A. cerana cerana CDK1 (AccCDK1). The distribution profile of AccCDK1 in different developmental periods and different tissues was determined. The experimental results showed that the distribution of AccCDK1 was tissue-specific. AccCDK1 distribution at the transcriptional and translational levels was affected by stress conditions induced by H2O2, UV, HgCl2, CdCl2, extreme temperatures (4 °C, 44 °C) and pesticides (avermectin, lambda-cyhalothrin, haloxyfop-R-methyl, and glyphosate), which resulted in changes in the expression levels. These results suggest that AccCDK1 may have an important part to play in honey bee resistance to stress. The expression of a recombinant AccCDK1 protein in vitro enhanced the antistress capacities of E. coli and yeast, which suggests that AccCDK1 is related to the stress response. When AccCDK1 was silenced, the expression of some antioxidant genes was downregulated, and the enzymatic potencies of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were reduced, which suggests that AccCDK1 takes part in the body's resistance to oxidative stress upon external stimulation by influencing relevant antioxidants. Notably, the survival rate of A. cerana cerana under high-temperature-induced stress decreased after AccCDK1 silencing, which verifies our results. In conclusion, we found that AccCDK1 played an indispensable function in resisting oxidative stress and maintaining normal cellular functions.
Collapse
Affiliation(s)
- Hongyan Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Wenlu Shan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
3
|
Guo D, Hao C, Cui X, Wang Y, Liu Z, Xu B, Guo X. Molecular and functional characaterization of the novel odorant-binding protein gene AccOBP10 from Apis cerana cerana. J Biochem 2021; 169:215-225. [PMID: 32926109 DOI: 10.1093/jb/mvaa103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/29/2020] [Indexed: 11/14/2022] Open
Abstract
Odorant-binding proteins (OBPs) play an important role in odour perception and transport in insects. However, little is known about whether OBPs perform other functions in insects, particularly in Apis cerana cerana. Within this study, an OBP gene (AccOBP10) was isolated and identified from A. c. cerana. Both homology and phylogenetic relationship analyses indicated that the amino acid sequence of AccOBP10 had a high degree of sequence identity with other members of the gene family. Analysis of quantitative real-time PCR (qRT-PCR) showed that AccOBP10 mRNA was expressed at higher levels in the venom gland than in other tissues. The mRNA transcript expression of AccOBP10 was upregulated by low temperature (4°C), hydrogen peroxide (H2O2), pyridaben, methomyl and imidacloprid but downregulated by heat (42°C), ultraviolet light, vitamin C, mercuric chloride, cadmium chloride, paraquat and phoxim. Expression of AccOBP10 under abiotic stress was analysed by western blotting, and the results were consistent with those of qRT-PCR. And as a further study of AccOBP10 function, we demonstrated that knockdown of AccOBP10 by RNA interference could slightly increase the expression levels of some stress-related genes. Collectively, these results suggest that AccOBP10 is mainly involved in the response to stress conditions.
Collapse
Affiliation(s)
- Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences
| | - Cuihong Hao
- State Key Laboratory of Crop Biology, College of Life Sciences
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences
| |
Collapse
|
4
|
Shan W, Guo D, Guo H, Tan S, Ma L, Wang Y, Guo X, Xu B. Cloning and expression studies on glutathione S-transferase like-gene in honey bee for its role in oxidative stress. Cell Stress Chaperones 2021; 27:121-134. [PMID: 35102524 PMCID: PMC8943077 DOI: 10.1007/s12192-022-01255-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/03/2022] Open
Abstract
Glutathione S-transferases (GSTs) constitute an important multifunctional enzyme family that plays vital roles in cellular detoxification and protecting organisms against oxidative stress caused by reactive oxygen species (ROS). In this study, we isolated a GST-like gene from Apis cerana cerana (AccGSTL) and investigated its antioxidant functions under stress conditions. We found that AccGSTL belongs to the Sigma class of GSTs. Real-time quantitative PCR and western blotting analyses showed that the mRNA and protein levels of AccGSTL were altered in response to oxidative stress caused by various external stimuli. In addition, a heterologous expression analysis showed that AccGSTL overexpression in Escherichia coli (E. coli) cells enhanced resistance to oxidative stress. After AccGSTL silencing with RNA interference (RNAi) technology, the expression of some antioxidant genes was inhibited, and the enzymatic activities of POD, CAT, and SOD were decreased. In conclusion, these data suggest that AccGSTL may be involved in antioxidant defense under adverse conditions in A. cerana cerana.
Collapse
Affiliation(s)
- Wenlu Shan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Huijuan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Zhang X, Li G, Yang X, Wang L, Wang Y, Guo X, Li H, Xu B. Identification of a DnaJC3 gene in Apis cerana cerana and its involvement in various stress responses. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:171-180. [PMID: 31519252 DOI: 10.1016/j.pestbp.2019.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
As molecular chaperones, DnaJs play critical roles in maintaining cytoplasmic structure and resisting various stresses. However, the functions of DnaJs in insects are poorly understood. In this study, we identified a DnaJC3 from Apis cerana cerana (AccDnaJC3) and investigated its roles in adverse conditions. Real-time quantitative PCR analysis showed that AccDnaJC3 was highly expressed in muscle and epidermis. In addition, AccDnaJC3 was induced by a variety of stresses, such as 4 °C, 24 °C, 44 °C, H2O2, HgCl2, VC, UV, cyhalothrin, abamectin and emamectin benzoate treatments, whereas it was inhibited by CdCl2 and paraquat treatments. Disc diffusion experiments indicated that overexpression of recombinant AccDnaJC3 enhanced Escherichia coli tolerance to some stress conditions. In contrast to the control group, when AccDnaJC3 was knocked down with RNAi technology, several other antioxidant genes were downregulated, suggesting that AccDnaJC3 may play important roles in stress response. Furthermore, we found that the enzyme activities of superoxide dismutase, peroxidase and catalase were lower in AccDnaJC3-knockdown bees than in control bees. Taken together, these results suggest that AccDnaJC3 may be involved in various stress responses in Apis cerana cerana.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xinxin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
6
|
Han W, Yang Y, Gao J, Zhao D, Ren C, Wang S, Zhao S, Zhong Y. Chronic toxicity and biochemical response of Apis cerana cerana (Hymenoptera: Apidae) exposed to acetamiprid and propiconazole alone or combined. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:399-411. [PMID: 30874992 DOI: 10.1007/s10646-019-02030-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Acetamiprid and ergosterol-inhibiting fungicide (EBI) are frequently applied to many flowering plants, while honey bees are pollinating agents or pollinators of the flowers. Hence honey bees are often exposed to these pesticides. But until now, the effects of theses combinations at field-realistic doses on honey bee health have been poorly investigated. In this study, we explore the synergistic mortality and some physiological effects in surviving honey bees after chronic oral exposure to acetamiprid and/or propiconazole in the laboratory. The results indicated that chronic combined exposure to acetamiprid and propiconazole produced a significant synergistic effect on mortality both for newly emerged bees (50% mortality in 7.2 days) and forager bees (50% mortality in 4.8 days). Honey bee weight of newly emerged bees was decreased after feeding food with a field concentration of acetamiprid and propiconazole, alone or combined for 10 days. Combination of acetamiprid and propiconazole also modulated the activities of P450s, GST and CAT in newly emerged bees and forager bees than either alone, but neither pesticide affected the activity of AChE. These results show that chronic combined exposure to pesticides of relatively low toxicity may caused severely physiological disruptions that could be potentially damaging for the honey bees.
Collapse
Affiliation(s)
- Wensu Han
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yemeng Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jinglin Gao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Dongxiang Zhao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Chengcai Ren
- Hainan Bosswell Agrichemical Co., Ltd, Haikou, China
| | - Shijie Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shan Zhao
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yihai Zhong
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Bee Industry Technology Research Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
7
|
Zhai N, Jia H, Ma M, Chao Y, Guo X, Li H. Characteristics of AccSTIP1 in Apis cerana cerana and its role during oxidative stress responses. Cell Stress Chaperones 2018; 23:1165-1176. [PMID: 30128723 PMCID: PMC6237692 DOI: 10.1007/s12192-018-0920-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 10/28/2022] Open
Abstract
Various environmental stresses, such as heat shock, heavy metals, ultraviolet (UV) radiation and different pesticides, induce a cellular oxidative stress response. The cellular oxidative stress response is usually regulated by heat shock proteins (Hsps) acting as molecular chaperones. Stress-induced phosphoprotein 1 (STIP1), one of the most widely studied co-chaperones, functions as an adaptor that directs Hsp90 to Hsp70-client protein complexes. However, the biological functions of STIP1 remain poorly understood in honeybee (Apis cerana cerana). In this study, AccSTIP1 was identified in Apis cerana cerana. AccSTIP1 transcription was found to be induced by heat (42 °C), HgCl2, H2O2 and different pesticides (emamectin benzoate, thiamethoxam, hexythiazox and paraquat) and inhibited by CdCl2, UV and kresoxim-methyl. Moreover, western blot analysis indicated that the expression profiles of AccSTIP1 were consistent with its transcriptional expression levels. The disc diffusion assay showed that chemically competent transetta (DE3) bacteria expressing a recombinant AccSTIP1 protein displayed the smaller death zones than did control bacteria after exposure to paraquat and HgCl2. The DNA nicking assay suggested that recombinant purified AccSTIP1 protected supercoiled pUC19 plasmid DNA from damage caused by a thiol-dependent mixed-function oxidation (MFO) system. After knocking down AccSTIP1 gene expression via RNA interference (RNAi), the transcript levels of antioxidation-related genes were obviously lower in dsAccSTIP1 honeybees compared with those in the uninjected honeybees. Collectively, these results demonstrated that AccSTIP1 plays an important role in counteracting oxidative stress. This study lays a foundation for revealing the mechanism of AccSTIP1 in the Apis cerana cerana antioxidant system.
Collapse
Affiliation(s)
- Na Zhai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Haihong Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Manli Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Yuzhen Chao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| |
Collapse
|
8
|
Li G, Zhao H, Zhang X, Zhang Y, Zhao H, Yang X, Guo X, Xu B. Environmental Stress Responses of DnaJA1, DnaJB12 and DnaJC8 in Apis cerana cerana. Front Genet 2018; 9:445. [PMID: 30349556 PMCID: PMC6186841 DOI: 10.3389/fgene.2018.00445] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/14/2018] [Indexed: 12/23/2022] Open
Abstract
DnaJ, also known as Hsp40, plays important roles in maintaining the normal physiological state of an organism under stress conditions by mediating essential processes, such as protein synthesis, degradation, folding and metabolism. However, the exact functions of most DnaJ members are not fully understood in insects. Here, we identified three genes, AccDnaJA1, AccDnaJB12, and AccDnaJC8, in Apis cerana cerana and explored their connection with the environmental stress response. Quantitative real-time PCR results showed that the mRNA levels of AccDnaJA1, AccDnaJB12, and AccDnaJC8 were all induced under cold, UV, H2O2 and different pesticides treatment. The expression patterns of AccDnaJB12 and AccDnaJC8 were upregulated by CdCl2 and HgCl2 stress, while the transcriptional levels of AccDnaJA1 were downregulated by CdCl2 and HgCl2 stress. Western blot findings further indicated that AccDnaJB12 protein levels were increased by some stress conditions. Knockdown of each of these three genes downregulated the transcriptional patterns of several stress response-related genes at different levels. Functional analysis further demonstrated that the resistance of A. cerana cerana to lambda-cyhalothrin stress was reduced with knockdown of AccDnaJA1, AccDnaJB12, or AccDnaJC8, indicating that these three genes may be involved in the tolerance to this pesticide. Taken together, these findings indicate that AccDnaJA1, AccDnaJB12, and AccDnaJC8 may play pivotal roles in the stress response by facilitating honeybee survival under some adverse circumstances. To our knowledge, this is the first report that reveals the roles of DnaJ family proteins under different adverse circumstances in A. cerana cerana.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xuemei Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Yanming Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Huayu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xinxin Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
9
|
Li G, Wang L, Wang Y, Li H, Liu Z, Wang H, Xu B, Guo X. Developmental characterization and environmental stress responses of Y-box binding protein 1 gene (AccYB-1) from Apis cerana cerana. Gene 2018; 674:37-48. [DOI: 10.1016/j.gene.2018.06.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
|
10
|
Li G, Zhao H, Liu Z, Wang H, Xu B, Guo X. The Wisdom of Honeybee Defenses Against Environmental Stresses. Front Microbiol 2018; 9:722. [PMID: 29765357 PMCID: PMC5938604 DOI: 10.3389/fmicb.2018.00722] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
As one of the predominant pollinator, honeybees provide important ecosystem service to crops and wild plants, and generate great economic benefit for humans. Unfortunately, there is clear evidence of recent catastrophic honeybee colony failure in some areas, resulting in markedly negative environmental and economic effects. It has been demonstrated that various environmental stresses, including both abiotic and biotic stresses, functioning singly or synergistically, are the potential drivers of colony collapse. Honeybees can use many defense mechanisms to decrease the damage from environmental stress to some extent. Here, we synthesize and summarize recent advances regarding the effects of environmental stress on honeybees and the wisdom of honeybees to respond to external environmental stress. Furthermore, we provide possible future research directions about the response of honeybees to various form of stressors.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
11
|
Li G, Zhang Y, Ni Y, Wang Y, Xu B, Guo X. Identification of a melatonin receptor type 1A gene (AccMTNR1A) in Apis cerana cerana and its possible involvement in the response to low temperature stress. Naturwissenschaften 2018; 105:24. [DOI: 10.1007/s00114-018-1546-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
|
12
|
Ma M, Jia H, Cui X, Zhai N, Wang H, Guo X, Xu B. Isolation of carboxylesterase (esterase FE4) from Apis cerana cerana and its role in oxidative resistance during adverse environmental stress. Biochimie 2018; 144:85-97. [DOI: 10.1016/j.biochi.2017.10.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/25/2017] [Indexed: 01/13/2023]
|