1
|
Guo S, Zhang Y, Lian J, Su C, Wang H. The role of hydrogen sulfide in the regulation of necroptosis across various pathological processes. Mol Cell Biochem 2025; 480:1999-2013. [PMID: 39138751 DOI: 10.1007/s11010-024-05090-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Necroptosis is a programmed cell death form executed by receptor-interacting protein kinase (RIPK) 1, RIPK3 and mixed lineage kinase domain-like protein (MLKL), which assemble into an oligomer called necrosome. Accumulating evidence reveals that necroptosis participates in many types of pathological processes. Hence, clarifying the mechanism of necroptosis in pathological processes is particularly important for the prevention and treatment of various diseases. For over 300 years, hydrogen sulfide (H2S) has been widely known in the scientific community as a toxic and foul-smelling gas. However, after discovering the important physiological and pathological functions of H2S, human understanding of this small molecule changed, believing that H2S is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO). H2S plays an important role in various diseases, but the related mechanisms are not yet fully understood. In recent years, more and more studies have shown that H2S regulation of necroptosis is involved in various pathological processes. Herein, we focus on the recent progress on the role of H2S regulation of necroptosis in different pathological processes and profoundly analyze the related mechanisms.
Collapse
Affiliation(s)
- Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jingwen Lian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Chunqi Su
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
2
|
Sun J, Niu L, Wang Y, Zhao G, Tang L, Jiang J, Pan S, Ge X. MicroRNA‑17‑5p alleviates sepsis‑related acute kidney injury in mice by modulating inflammation and apoptosis. Mol Med Rep 2024; 30:139. [PMID: 38904199 PMCID: PMC11200053 DOI: 10.3892/mmr.2024.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/23/2024] [Indexed: 06/22/2024] Open
Abstract
Septic acute kidney injury (AKI) is considered as a severe and frequent complication that occurs during sepsis. Mounting evidence has confirmed the pivotal pathogenetic roles of microRNA (miRNA or miR) in sepsis‑induced AKI; however, the role of miRNAs and their underlying mechanisms in sepsis‑induced AKI have not been entirely understood. The present study aimed to elucidate the functions of special miRNAs during sepsis‑induced AKI and its underlying mechanism. First, a number of differently expressed miRNAs was identified based on the microarray dataset GSE172044. Subsequently, lipopolysaccharide (LPS) was used to induce AKI in mice, and the role of miR‑17‑5p on AKI was clarified. Finally, the related molecular mechanisms were further examined by western blotting and immunohistochemical analysis. MiR‑17‑5p was found to be continuously decreased and reached the bottom at h 24 after AKI in mice. Functionally, injection of agomiR‑17‑5p could observably improve renal injury and survival rate, as well as inhibit inflammatory cytokine production and renal cell apoptosis in mice after AKI. On the contrary, injection of antagomiR‑17‑5p aggravated LPS‑induced renal injury, inflammation and apoptosis in mice after AKI. Moreover, transforming growth factor β receptor 2 (TGFβR2) was identified as a direct target of miR‑17‑5p, and its downstream phosphorylated Smad3 was also suppressed by miR‑17‑5p upregulation. Taken together, these results demonstrated that miR‑17‑5p overexpression may exhibit a beneficial effect by attenuating LPS‑induced inflammation and apoptosis via regulating the TGFβR2/TGF‑β/Smad3 signaling pathway, indicating that miR‑17‑5p could act as a potential target for sepsis treatment.
Collapse
Affiliation(s)
- Jian Sun
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Lei Niu
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Yang Wang
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Gang Zhao
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 20023, P.R. China
| | - Lujia Tang
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Jiamei Jiang
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 20023, P.R. China
| | - Shuming Pan
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Xiaoli Ge
- Emergency Department, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
3
|
Sulastomo H, Dinarti LK, Hariawan H, Haryana SM. MicroRNA expression alteration in chronic thromboembolic pulmonary hypertension: A systematic review. Pulm Circ 2024; 14:e12443. [PMID: 39308943 PMCID: PMC11413763 DOI: 10.1002/pul2.12443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is marked by persistent blood clots in pulmonary arteries, leading to significant morbidity and mortality. Emerging evidence highlights the role of microRNAs (miRNAs) in pulmonary hypertension, though findings on miRNA expression in CTEPH remain limited and inconsistent. This systematic review evaluates miRNA expression changes in CTEPH and their direction. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we registered our protocol in International Prospective Register of Systematic Reviews (CRD42024524469). We included studies on miRNA expression in CTEPH with comparative or analytical designs, excluding nonhuman studies, interventions, non-English texts, conference abstracts, and editorials. Databases searched included PubMed, EMBASE, Scopus, CENTRAL, and ProQuest. The Quality Assessment of Diagnostic Accuracy Studies-2 tool assessed bias risk, and results were synthesized narratively. Of 313 unique studies, 39 full texts were reviewed, and 9 met inclusion criteria, totaling 235 participants. Blood samples were analysed using quantitative real time polymerase chain reaction. Seven miRNAs (miR-665, miR-3202, miR-382, miR-127, miR-664, miR-376c, miR-30) were uniformly upregulated, while nine (miR-20a-5p13, miR-17-5p, miR-93-5p, miR-22, let-7b, miR-106b-5p, miR-3148, miR-320-a, miR-320b) were downregulated in CTEPH patients. Two upregulated miRNAs (miR-127 and miR-30a) were consistently associated with previous evidence in the mechanism inducing the development of CTEPH, and five downregulated miRNAs (miR-20-a, miR-17-5p, miR-93-5p, let-7b, miR-106b-5p) were associated with a protective effect against CTEPH. We also identified gaps in the literature where the evidence for five upregulated miRNAs (miR-665, miR-3202, miR-382, miR-664 and miR-376c) and four downregulated miRNAs (miR-22, miR-3148, miR-320-a, and miR-320b) in CTEPH is conflicting. Our findings offer insights into the role of miRNAs in CTEPH and underscore the need for further research to validate these miRNAs as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Heru Sulastomo
- Department of Cardiology and Vascular Medicine, Faculty of MedicineUniversitas Sebelas MaretSurakartaIndonesia
| | - Lucia Kris Dinarti
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and NursingUniversitas Gadjah MadaYogyakartaIndonesia
| | - Hariadi Hariawan
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and NursingUniversitas Gadjah MadaYogyakartaIndonesia
| | - Sofia Mubarika Haryana
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and NursingUniversitas Gadjah MadaYogyakartaIndonesia
| |
Collapse
|
4
|
Shreya S, Alam MJ, Anupriya, Jaiswal S, Rani V, Jain BP. Lipotoxicity, ER Stress, and Cardiovascular Disease: Current Understanding and Future Directions. Cardiovasc Hematol Agents Med Chem 2024; 22:319-335. [PMID: 37859305 DOI: 10.2174/0118715257262366230928051902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
The endoplasmic reticulum (ER) is a sub-cellular organelle that is responsible for the correct folding of proteins, lipid biosynthesis, calcium storage, and various post-translational modifications. In the disturbance of ER functioning, unfolded or misfolded proteins accumulate inside the ER lumen and initiate downstream signaling called unfolded protein response (UPR). The UPR signaling pathway is involved in lipolysis, triacylglycerol synthesis, lipogenesis, the mevalonate pathway, and low-density lipoprotein receptor recycling. ER stress also affects lipid metabolism by changing the levels of enzymes that are involved in the synthesis or modifications of lipids and causing lipotoxicity. Lipid metabolism and cardiac diseases are in close association as the deregulation of lipid metabolism leads to the development of various cardiovascular diseases (CVDs). Several studies have suggested that lipotoxicity is one of the important factors for cardiovascular disorders. In this review, we will discuss how ER stress affects lipid metabolism and their interplay in the development of cardiovascular disorders. Further, the current therapeutics available to target ER stress and lipid metabolism in various CVDs will be summarized.
Collapse
Affiliation(s)
- Smriti Shreya
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Md Jahangir Alam
- Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Anupriya
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Saumya Jaiswal
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Buddhi Prakash Jain
- Gene Expression and Signaling lab, Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| |
Collapse
|
5
|
He L, Lu F, Zhang F, Fan S, Xu J. Mechanism of lncRNA HOTAIR in attenuating cardiomyocyte pyroptosis in mice with heart failure via the miR-17-5p/RORA axis. Exp Cell Res 2023; 433:113806. [PMID: 37844792 DOI: 10.1016/j.yexcr.2023.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
Heart failure (HF) is a complex clinical syndrome associated with significant morbidity and mortality. Dysregulation of long non-coding RNA (lncRNA) has been implicated in the pathogenesis of HF. The present study aims to investigate the role of lncRNA HOX transcript antisense RNA (HOTAIR) in cardiomyocyte pyroptosis in a murine HF model. A murine HF model was established through transverse aortic contraction surgery, and an in vitro HF cell model was developed by treating HL-1 cells with H2O2. HOTAIR was overexpressed in TAC mice and HL-1 cells via pcDNA3.1-HOTAIR transfection. Cardiac function was assessed in TAC mice, and myocardial changes were evaluated using HE staining. The expression of NLRP3 was examined by immunohistochemistry. Myocardial injury markers and pyroptosis-related inflammatory cytokines were quantified using ELISA. Protein levels of NLRP3, cleaved-caspase-1, and GSDMD-N were analyzed by Western blot. Dual-luciferase assays and RNA immunoprecipitation were employed to confirm the binding interactions between HOTAIR and miR-17-5p, miR-17-5p and RORA. Functional rescue experiments were conducted by overexpressing miR-17-5p or silencing RORA in HL-1 cells. HOTAIR exhibited reduced expression in TAC mice and H2O2-induced cardiomyocytes. Overexpression of HOTAIR ameliorated cardiac dysfunction, reduced myocardial pathological injury, enhanced cardiomyocyte viability, and decreased myocardial injury and pyroptosis. HOTAIR interacted with miR-17-5p to repress RORA transcription. Overexpression of miR-17-5p or silencing of RORA abolished the inhibitory effect of HOTAIR overexpression on cardiomyocyte pyroptosis. In conclusion, HOTAIR competitively bound to miR-17-5p, relieving its inhibition of RORA transcription and leading to increased RORA expression and suppressed cardiomyocyte pyroptosis in HF models.
Collapse
Affiliation(s)
- Le He
- Tianjin Chest Hospital, School of Medicine, Tianjin University, Tianjin, 300222, China
| | - Fengmin Lu
- Tianjin Chest Hospital, School of Medicine, Tianjin University, Tianjin, 300222, China
| | - Fan Zhang
- Tianjin Chest Hospital, School of Medicine, Tianjin University, Tianjin, 300222, China
| | - Shaobo Fan
- Tianjin Chest Hospital, School of Medicine, Tianjin University, Tianjin, 300222, China
| | - Jing Xu
- Tianjin Chest Hospital, School of Medicine, Tianjin University, Tianjin, 300222, China.
| |
Collapse
|
6
|
Yu CJ, Xia F, Ruan L, Hu SP, Zhu WJ, Yang K. Circ_0004771 Promotes Hypoxia/Reoxygenation Induced Cardiomyocyte Injury via Activation of Mitogen-Activated Protein Kinase Signaling Pathway. Int Heart J 2023; 64:1125-1132. [PMID: 37967979 DOI: 10.1536/ihj.23-333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
This study aimed to observe the mechanism and effect of circ_0004771 on cardiomyocyte injury in acute myocardial infarction (AMI). The differences in circ_0004771 expression in the blood of AMI patients and healthy volunteers were observed by Real-Time Quantitative Reverse Transcription-Polymerase Chain Reaction. AMI cell models were constructed by hypoxia/reoxygenation (H/R)-induced injury in human cardiomyocytes (AC16 cells). The changes of circ_0004771 expression in AMI cells were observed. After transfection with the knockdown or overexpression of circ_0004771 vector in AMI cells, Cell Counting Kit-8 (CCK-8) assay and propidium iodide/FITC-Annexin V staining were performed to detect cell proliferation and apoptosis levels, extracellular lactate dehydrogenase (LDH) activity, malondialdehyde (MDA) concentration, and superoxide dismutase (SOD) activity. Expression levels of Mitogen-activated protein kinase (MAPK) signaling pathway-related proteins (p-MEK1/2, MEK1/2, p-ERK1/2, ERK1/2), and endoplasmic reticulum (ER) stress proteins (GRP78 and CHOP-1) were observed in each group of cells by western blot method. The expression level of circ_0004771 was significantly reduced in both clinical samples and cells of AMI. When circ_0004771 was knocked down in AMI cells, it resulted in a decrease in cell proliferation level and significant increase in apoptosis level. The inhibition of circ_0004771 expression caused leakage of LDH in AMI cells, accumulation of intracellular MDA, and inhibition of SOD activity. In addition, the knockdown of circ_0004771 significantly increased the levels of p-MEK1/2, p-ERK1/2, GRP78, and CHOP-1 in H/R-induced AC16 cells. However, the overexpression of circ_0004771 resulted in the opposite result as when circ_0004771 was knocked down. A low level of circ_0004771 in AMI activates the MAPK signaling pathway in cardiomyocytes as well as encourages intracellular oxidative stress and ER stress, thereby inhibiting cell proliferation and promoting apoptosis.
Collapse
Affiliation(s)
- Chun-Jun Yu
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital
| | - Feng Xia
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital
| | - Lin Ruan
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital
| | - Sheng-Peng Hu
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital
| | - Wen-Jie Zhu
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital
| | - Kai Yang
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital
| |
Collapse
|
7
|
Mohd Isa NI, Syafruddin SE, Mokhtar MH, Zainal Abidin S, Jaffar FHF, Ugusman A, Hamid AA. Potential Roles of microRNAs for Assessing Cardiovascular Risk in Pre-Eclampsia-Exposed Postpartum Women and Offspring. Int J Mol Sci 2023; 24:16842. [PMID: 38069164 PMCID: PMC10706476 DOI: 10.3390/ijms242316842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Pre-eclampsia, which is part of the spectrum of hypertensive pregnancy disorders, poses a significant health burden, contributing to maternal and infant morbidity and mortality. Pre-eclampsia is widely associated with persistent adverse effects on the cardiovascular health of women with a history of pre-eclampsia. Additionally, there is increasing evidence demonstrating that offspring of pre-eclamptic pregnancies have altered cardiac structure and function, as well as different vascular physiology due to the decrease in endothelial function. Therefore, early detection of the likelihood of developing pre-eclampsia-associated cardiovascular diseases is vital, as this could facilitate the undertaking of the necessary clinical measures to avoid disease progression. The utilisation of microRNAs as biomarkers is currently on the rise as microRNAs have been found to play important roles in regulating various physiological and pathophysiological processes. In regard to pre-eclampsia, recent studies have shown that the expression of microRNAs is altered in postpartum women and their offspring who have been exposed to pre-eclampsia, and that these alterations may persist for several years. This review, therefore, addresses changes in microRNA expression found in postpartum women and offspring exposed to pre-eclampsia, their involvement in cardiovascular disease, and the potential role of microRNAs to be used as predictive tools and therapeutic targets in future cardiovascular disease research.
Collapse
Affiliation(s)
- Nurul Iffah Mohd Isa
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.I.M.I.); (M.H.M.); (F.H.F.J.); (A.U.)
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.I.M.I.); (M.H.M.); (F.H.F.J.); (A.U.)
| | - Shahidee Zainal Abidin
- Faculty of Science and Marine Environment, University Malaysia Terengganu, Kuala Nerus 21030, Malaysia;
| | - Farah Hanan Fathihah Jaffar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.I.M.I.); (M.H.M.); (F.H.F.J.); (A.U.)
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.I.M.I.); (M.H.M.); (F.H.F.J.); (A.U.)
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.I.M.I.); (M.H.M.); (F.H.F.J.); (A.U.)
| |
Collapse
|
8
|
Martinez-Amaro FJ, Garcia-Padilla C, Franco D, Daimi H. LncRNAs and CircRNAs in Endoplasmic Reticulum Stress: A Promising Target for Cardiovascular Disease? Int J Mol Sci 2023; 24:9888. [PMID: 37373035 DOI: 10.3390/ijms24129888] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The endoplasmic reticulum (ER) is a principal subcellular organelle responsible for protein quality control in the secretory pathway, preventing protein misfolding and aggregation. Failure of protein quality control in the ER triggers several molecular mechanisms such as ER-associated degradation (ERAD), the unfolded protein response (UPR) or reticulophagy, which are activated upon ER stress (ERS) to re-establish protein homeostasis by transcriptionally and translationally regulated complex signalling pathways. However, maintenance over time of ERS leads to apoptosis if such stress cannot be alleviated. The presence of abnormal protein aggregates results in loss of cardiomyocyte protein homeostasis, which in turn results in several cardiovascular diseases such as dilated cardiomyopathy (DCM) or myocardial infarction (MI). The influence of a non-coding genome in the maintenance of proper cardiomyocyte homeostasis has been widely proven. To date, the impact of microRNAs in molecular mechanisms orchestrating ER stress response has been widely described. However, the role of long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) is just beginning to be addressed given the potential role of these RNA classes as therapeutic molecules. Here, we provide a current state-of-the-art review of the roles of distinct lncRNAs and circRNAs in the modulation of ERS and UPR and their impact in cardiovascular diseases.
Collapse
Affiliation(s)
| | - Carlos Garcia-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Medina Foundation, 18016 Granada, Spain
| | - Houria Daimi
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
- Department of Biology, Faculty of Sciences, University of Gabes, Gabes 6072, Tunisia
| |
Collapse
|
9
|
Fan M, Zhang J, Zeng L, Wang D, Chen J, Xi X, Long J, Huang J, Li X. Non-coding RNA mediates endoplasmic reticulum stress-induced apoptosis in heart disease. Heliyon 2023; 9:e16246. [PMID: 37251826 PMCID: PMC10209419 DOI: 10.1016/j.heliyon.2023.e16246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Apoptosis is a complex and highly self-regulating form of cell death, which is an important cause of the continuous decline in ventricular function and is widely involved in the occurrence and development of heart failure, myocardial infarction, and myocarditis. Endoplasmic reticulum stress plays a crucial role in apoptosis-inducing. Accumulation of misfolded or unfolded proteins causes cells to undergo a stress response called unfolded protein response (UPR). UPR initially has a cardioprotective effect. Nevertheless, prolonged and severe ER stress will lead up to apoptosis of stressed cells. Non-coding RNA is a type of RNA that does not code proteins. An ever-increasing number of studies have shown that non-coding RNAs are involved in regulating endoplasmic reticulum stress-induced cardiomyocyte injury and apoptosis. In this study, the effects of miRNA and LncRNA on endoplasmic reticulum stress in various heart diseases were mainly discussed to clarify their protective effects and potential therapeutic strategies for apoptosis.
Collapse
Affiliation(s)
- Mingyuan Fan
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Zhang
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lei Zeng
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Danpeng Wang
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jiao Chen
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaorong Xi
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Long
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jinzhu Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xueping Li
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
10
|
Pan Q, Xu X, He W, Wang Y, Xiang Z, Jin X, Tang Q, Zhao T, Ma X. Enrichment of miR-17-5p enhances the protective effects of EPC-EXs on vascular and skeletal muscle injury in a diabetic hind limb ischemia model. Biol Res 2023; 56:16. [PMID: 37005678 PMCID: PMC10067242 DOI: 10.1186/s40659-023-00418-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/07/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND/AIMS Diabetes mellitus (DM) is highly susceptible to diabetic hind limb ischemia (DHI). MicroRNA (MiR)-17-5p is downregulated in DM and plays a key role in vascular protection. Endothelial progenitor cell (EPC)-released exosomes (EPC-EXs) contribute to vascular protection and ischemic tissue repair by transferring their contained miRs to target cells. Here, we investigated whether miR-17-5p-enriched EPC-EXs (EPC-EXsmiR-17-5p) had conspicuous effects on protecting vascular and skeletal muscle in DHI in vitro and in vivo. METHODS EPCs transfected with scrambled control or miR-17-5p mimics were used to generate EPC-EXs and EPC-EXsmiR-17-5p. Db/db mice were subjected to hind limb ischemia. After the surgery, EPC-EXs and EPC-EXsmiR-17-5p were injected into the gastrocnemius muscle of the hind limb once every 7 days for 3 weeks. Blood flow, microvessel density, capillary angiogenesis, gastrocnemius muscle weight, structure integrity, and apoptosis in the hind limb were assessed. Vascular endothelial cells (ECs) and myoblast cells (C2C12 cells) were subjected to hypoxia plus high glucose (HG) and cocultured with EPC-EXs and EPC-EXsmiR-17-5p. A bioinformatics assay was used to analyze the potential target gene of miR-17-5p, the levels of SPRED1, PI3K, phosphorylated Akt, cleaved caspase-9 and cleaved caspase-3 were measured, and a PI3K inhibitor (LY294002) was used for pathway analysis. RESULTS In the DHI mouse model, miR-17-5p was markedly decreased in hind limb vessels and muscle tissues, and infusion of EPC-EXsmiR-17-5p was more effective than EPC-EXs in increasing miR-17-5p levels, blood flow, microvessel density, and capillary angiogenesis, as well as in promoting muscle weight, force production and structural integrity while reducing apoptosis in gastrocnemius muscle. In Hypoxia plus HG-injured ECs and C2C12 cells, we found that EPC-EXsmiR-17-5p could deliver their carried miR-17-5p into target ECs and C2C12 cells and subsequently downregulate the target protein SPRED1 while increasing the levels of PI3K and phosphorylated Akt. EPC-EXsmiR-17-5p were more effective than EPC-EXs in decreasing apoptosis and necrosis while increasing viability, migration, and tube formation in Hypoxia plus HG-injured ECs and in decreasing apoptosis while increasing viability and myotube formation in C2C12 cells. These effects of EPC-EXsmiR-17-5p could be abolished by a PI3K inhibitor (LY294002). CONCLUSION Our results suggest that miR-17-5p promotes the beneficial effects of EPC-EXs on DHI by protecting vascular ECs and muscle cell functions.
Collapse
Affiliation(s)
- Qunwen Pan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaobing Xu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Wen He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China
| | - Zhi Xiang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaojuan Jin
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Qiong Tang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Ting Zhao
- Out-Patient Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Xiaotang Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
11
|
Lu Y, Li SY, Lou H. Patchouli alcohol protects against myocardial ischaemia-reperfusion injury by regulating the Notch1/Hes1 pathway. PHARMACEUTICAL BIOLOGY 2022; 60:949-957. [PMID: 35588098 PMCID: PMC9122376 DOI: 10.1080/13880209.2022.2064881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Patchouli alcohol (PA) has protective effects on cerebral ischaemia/reperfusion (I/R) injury, but its efficacy on myocardial ischaemia-reperfusion (MI/R) has yet to be addressed. OBJECTIVE To examine the therapeutic effect of PA on myocardial ischaemia-reperfusion (I/R) injury. MATERIALS AND METHODS C57BL/6 male mice were randomly divided into sham, MI/R, MI/R + PA-10, MI/R + PA-20 and MI/R + PA-40 groups. In vivo MI/R model was established by ligating the anterior descending coronary artery of the heart. In vitro stimulated IR cell model was constructed by using the rat cardiomyocyte H9C2 cell line. Mice in the treatment groups were intraperitoneally injected with PA (10, 20, 40 mg/kg) for 30 days then subjected to surgery, and cells in the experimental group were pre-treated with PA (1, 10 or 100 μmol/L). After treatment, mouse heart function, myocardial injury markers, myocardial infarction and Notch1/Hes1 expression, endoplasmic reticulum stress markers, and apoptosis-related proteins were determined. RESULTS In vivo, PA treatment improved hemodynamic parameter changes and myocardial enzymes, increased the left ventricular ejection fraction and left ventricular fractional shortening, reduced the left ventricular end-systolic diameter and inhibited CK-MB, cTnI and cTnT levels. In addition, PA attenuated myocardial tissue damage and apoptosis. PA treatment elevated Notch1, NICD and Hes1 levels and suppressed the levels of ATF4, p-PERK/PERK, and cleaved caspase-3/caspase-3 in vitro and in vivo. DISCUSSION AND CONCLUSION PA protects against MI/R, possibly by modulating ER stress, apoptosis and the Notch1/Hes1 signalling pathways. These findings indicate that PA may be a promising candidate for treating ischaemic heart diseases.
Collapse
Affiliation(s)
- Ying Lu
- Electrocardiogram room of Department of Functional Examination, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Shou-ye Li
- College of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Hui Lou
- Electrocardiogram room of Department of Functional Examination, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
12
|
Díez-Ricote L, Ruiz-Valderrey P, Micó V, Blanco R, Tomé-Carneiro J, Dávalos A, Ordovás JM, Daimiel L. TMAO Upregulates Members of the miR-17/92 Cluster and Impacts Targets Associated with Atherosclerosis. Int J Mol Sci 2022; 23:ijms232012107. [PMID: 36292963 PMCID: PMC9603323 DOI: 10.3390/ijms232012107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
Atherosclerosis is a hallmark of cardiovascular disease, and lifestyle strongly impacts its onset and progression. Nutrients have been shown to regulate the miR-17/92 cluster, with a role in endothelial function and atherosclerosis. Choline, betaine, and L-carnitine, found in animal foods, are metabolized into trimethylamine (TMA) by the gut microbiota. TMA is then oxidized to TMAO, which has been associated with atherosclerosis. Our aim was to investigate whether TMAO modulates the expression of the miR-17/92 cluster, along with the impact of this modulation on the expression of target genes related to atherosclerosis and inflammation. We treated HepG-2 cells, THP-1 cells, murine liver organoids, and human peripheral mononuclear cells with 6 µM of TMAO at different timepoints. TMAO increased the expression of all analyzed members of the cluster, except for miR-20a-5p in murine liver organoids and primary human macrophages. Genes and protein levels of SERPINE1 and IL-12A increased. Both have been associated with atherosclerosis and cardiovascular disease (CDVD) and are indirectly modulated by the miR-17-92 cluster. We concluded that TMAO modulates the expression of the miR-17/92 cluster and that such modulation could promote inflammation through IL-12A and blood clotting through SERPINE1 expression, which could ultimately promote atherosclerosis and CVD.
Collapse
Affiliation(s)
- Laura Díez-Ricote
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
| | - Paloma Ruiz-Valderrey
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
| | - Víctor Micó
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
| | - Ruth Blanco
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
- Research and Development Department, Biosearch Life Company, 28031 Madrid, Spain
| | - Joao Tomé-Carneiro
- Epigenetics of Lipid Metabolism Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
| | - Alberto Dávalos
- Epigenetics of Lipid Metabolism Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
| | - José M. Ordovás
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
- Nutrition and Genomics Laboratory, JM_USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-917278100 (ext. 309)
| |
Collapse
|
13
|
Liu C, Liu J, Wu D, Luo S, Li W, Chen L, Liu Z, Yu B. Construction of Immune-Related ceRNA Network in Dilated Cardiomyopathy: Based on Sex Differences. Front Genet 2022; 13:882324. [PMID: 35754849 PMCID: PMC9214033 DOI: 10.3389/fgene.2022.882324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Immune targeted therapy has become an attractive therapeutic approach for patients with dilated cardiomyopathy (DCM) recently. Genetic predisposition and gender play a critical role in immune-related responses of DCM. This study aimed to perform a bioinformatics analysis of molecular differences between male and female samples and identify immune-related ceRNA network in DCM. Methods: The gene expression microarray and clinical features dataset of GSE19303 was downloaded from the GEO. The raw data were preprocessed, followed by identification of differentially expressed genes (DEGs) between male and female DCM samples. Crucial functions and pathway enrichment analysis of DEGs were investigated through GO analysis and KEGG pathway analysis, respectively. A lncRNA–miRNA–mRNA network was constructed and a central module was extracted from the ceRNA network. Results: Compared with the female group, the male group benefits more from IA/IgG immunotherapy. Male patients of DCM had a significant positive correlation with the abundance of inflammatory cells (B cells, memory B cells, CD8+ Tem cells, and NK cells). Sex difference DEGs had a widespread impact on the signaling transduction, transcriptional regulation, and metabolism in DCM. Subsequently, we constructed an immune-related ceRNA network based on sex differences in DCM, including five lncRNAs, six miRNAs, and 29 mRNAs. Furthermore, we extracted a central module from the ceRNA network, including two lncRNAs (XIST and LINC00632), three miRNAs (miR-1-3p, miR-17-5p, and miR-22-3p), and six mRNAs (CBL, CXCL12, ESR1, IGF1R, IL6ST, and STC1). Among these DEGs, CBL, CXCL12, and IL6ST expression was considered to be associated with inflammatory cell infiltration in DCM. Conclusions: The identified ceRNA network and their enriched pathways may provide genetic insights into the phenotypic diversity of female and male patients with DCM and may provide a basis for development of sex-related individualization of immunotherapy.
Collapse
Affiliation(s)
- Chang Liu
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jian Liu
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Daihong Wu
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shaoling Luo
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weijie Li
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lushan Chen
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhen Liu
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bingbo Yu
- Department of Cardiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Ren H, Guo Z, Liu Y, Song C. Stem Cell-derived Exosomal MicroRNA as Therapy for Vascular Age-related Diseases. Aging Dis 2022; 13:852-867. [PMID: 35656114 PMCID: PMC9116915 DOI: 10.14336/ad.2021.1110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular age-related diseases describe a group of age-related chronic diseases that result in a considerable healthcare burden to society. Vascular aging includes structural changes and dysfunctions of endothelial cells (ECs) and smooth muscle cells (SMCs) in blood vessels. Compared with conventional treatment for vascular age-related diseases, stem cell (SC) therapy elicits better anti-aging effects viathe inhibition/delay ECs and SMCs from entering senescence. Exosomal noncoding RNA (ncRNAs) in vascular aging and stem cell-derived exosomal microRNAs (SCEV-miRNAs), especially in mesenchymal stem cells, have an important role in the development of age-related diseases. This review summarizes SCEV-miRNAs of diverse origins that may play a vital role in treating subclinical and clinical stages of vascular age-related disorders. We further explored possible age-related pathways and molecular targets of SCEV-miRNA, which are associated with dysfunctions of ECs and SMCs in the senescent stage. Moreover, the perspectives and difficulties of SCEV-miRNA clinical translation are discussed. This review aims to provide greater understanding of the biology of vascular aging and to identify critical therapeutic targets for SCEV-miRNAs. Though still in its infancy, the potential value of SCEV-miRNAs for vascular age-related diseases is clear.
Collapse
Affiliation(s)
- Hang Ren
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Ziyuan Guo
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Chunli Song
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Shi C, Tan J, Lu J, Huang J, Li X, Xu J, Wang X. MicroRNA-17-5p promotes vascular calcification by targeting ANKH. Curr Neurovasc Res 2022; 19:108-116. [PMID: 35297350 DOI: 10.2174/1567202619666220316115425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) may participate in the process of vascular calcification. However, the role of microRNA-17-5p in vascular calcification has not been clarified. In this study, we showed the effects of microRNA-17-5p on vascular calcification. MATERIALS AND METHODS Vascular smooth muscle cells (VSMCs) were transfected with miR-17-5p mimics, an miR-17-5p inhibitor or a negative control (NC) using Lipofectamine 2000. Then the cells were induced by an osteogenic medium. Alkaline phosphatase (ALP) activity and mineralization were determined. Osteocalcin (OC), bone morphogenetic protein 2(BMP-2), Col1agren Ia (Colla), Runx2 and ankylosis protein homolog (ANKH) gene expressions were determined by reverse transcription-polymerase chain reaction. Vascular calcification was developed using a renal failure model. RESULTS The ALP activity was increased when miR-17-5p mimics were transfected, whereas the miR-17-5p inhibitor reduced ALP activity (p < 0.05). The number and average area of mineral node in miR-17-5p mimics group were larger than those in corresponding control and NC groups (p < 0.05). The number and average area of the mineral nodes in the miR-17-5p inhibitor group were smaller than those in corresponding control and NC groups (p < 0.05). Bmp2, OC, Col1a and Runx2 were higher in the miR-17-5p mimics group compared to those in the control and NC groups. ANKH expression was decreased in VSMCs with the miR-17-5p mimics and increased in VSMCs with miR-17-5p inhibitor. ANKH siRNA intervention also promoted mineralization. The miR-17-5p expression was upregulated and ANKH was down-regulated in the aortic arteries with calcification. CONCLUSION Our data showed that miR-17-5p may promote vascular calcification by inhibiting ANKH expression.
Collapse
Affiliation(s)
- Chao Shi
- Department of Endocrinology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200135,China
| | - Jiaorong Tan
- Department of Endocrinology, Shanghai Putuo People's Hospital, Shanghai 200060,China
| | - Jiancan Lu
- Department of Endocrinology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200135,China
| | - Junling Huang
- Emergency department of Internal Medicine, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200135,China
| | - Xiangqi Li
- Department of Endocrinology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200135,China
| | - Jiahong Xu
- Department of Cardiology,Tongji Hospital,Tongji University School of Medicine, Shanghai 200065, China
| | - Xing Wang
- Department of Endocrinology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai 200135,China
| |
Collapse
|
16
|
Wu C, Liu B, Wang R, Li G. The Regulation Mechanisms and Clinical Application of MicroRNAs in Myocardial Infarction: A Review of the Recent 5 Years. Front Cardiovasc Med 2022; 8:809580. [PMID: 35111829 PMCID: PMC8801508 DOI: 10.3389/fcvm.2021.809580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/24/2021] [Indexed: 12/21/2022] Open
Abstract
Myocardial infarction (MI) is the most frequent end-point of cardiovascular pathology, leading to higher mortality worldwide. Due to the particularity of the heart tissue, patients who experience ischemic infarction of the heart, still suffered irreversible damage to the heart even if the vascular reflow by treatment, and severe ones can lead to heart failure or even death. In recent years, several studies have shown that microRNAs (miRNAs), playing a regulatory role in damaged hearts, bring light for patients to alleviate MI. In this review, we summarized the effect of miRNAs on MI with some mechanisms, such as apoptosis, autophagy, proliferation, inflammatory; the regulation of miRNAs on cardiac structural changes after MI, including angiogenesis, myocardial remodeling, fibrosis; the application of miRNAs in stem cell therapy and clinical diagnosis; other non-coding RNAs related to miRNAs in MI during the past 5 years.
Collapse
|
17
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
18
|
Chen B, Yang Y, Wu J, Song J, Lu J. microRNA-17-5p downregulation inhibits autophagy and myocardial remodelling after myocardial infarction by targeting STAT3. Autoimmunity 2021; 55:43-51. [PMID: 34755577 DOI: 10.1080/08916934.2021.1992754] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRs) are reported to regulate myocardial infarction (MI). This study was performed to investigate the function and mechanism of miR-17-5p in myocardial remodelling after MI. Initially, a mouse model of MI was established and MI mice were infected with lentivirus antago-miR-17-5p vector. High expression of miR-17-5p was found in myocardial tissues after MI. After inhibiting miR-17-5p expression, myocardial fibrosis, scarring, and cardiomyocyte apoptosis were improved, LC3-II/LC3-I ratio and Beclin-1 expression were decreased but p62 expression was increased. The dual-luciferase assay suggested that miR-17-5p targeted STAT3 and negatively regulated its expression. Then, after inhibiting STAT3 expression using STAT3 inhibitor S31-201, the fibrosis, scarring, and cardiomyocyte apoptosis were deteriorated, along with the rise of LC3-II/LC3-I and Beclin-1 expression, the reduction of p62 expression and the reversion of MI attenuation. In conclusion, inhibition of miR-17-5p can inhibit myocardial autophagy through targeting STAT3 and then inhibit myocardial remodelling, thereby protecting the myocardium after MI.
Collapse
Affiliation(s)
- Bo Chen
- Department of Cardiovascular, First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| | - Yingjun Yang
- Department of Cardiovascular, First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| | - Jinbo Wu
- Department of Cardiology, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Jianjiang Song
- Department of Cardiovascular, First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| | - Jia Lu
- Department of Cardiovascular, First People's Hospital of Jiashan County, Jiaxing, Zhejiang Province, China
| |
Collapse
|
19
|
Chan GCK, Than WH, Kwan BCH, Lai KB, Chan RCK, Ng JKC, Chow KM, Cheng PMS, Law MC, Leung CB, Li PKT, Szeto CC. Adipose expression of miR-130b and miR-17-5p with wasting, cardiovascular event and mortality in advanced chronic kidney disease patients. Nephrol Dial Transplant 2021; 37:1935-1943. [PMID: 34601609 DOI: 10.1093/ndt/gfab287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND There were limited data on the association of adipose microRNA expression with body composition and adverse clinical outcomes in patients with advanced chronic kidney disease (CKD). We aimed to evaluate the association of adipose miR-130b and miR-17-5p expressions with body composition, functional state, cardiovascular outcome and mortality in incident dialysis patients. METHODS We performed a single-centre prospective cohort study. Patients who were planned for peritoneal dialysis were recruited. MiR-130b and miR-17-5p expressions were measured from subcutaneous and pre-peritoneal fat tissue obtained during peritoneal dialysis catheter insertion. Body composition and physical function were assessed by bioimpedance spectroscopy and Clinical Frailty Scale. Primary outcome was 2-year survival. Secondary outcomes were 2-year technique survival and major adverse cardiovascular event (MACE) rate. RESULTS Adipose expression of miR-130b and miR-17-5p correlated with parameters of muscle mass including intracellular water (miR-130b: r = 0.191, P = 0.02; miR-17-5p: r = 0.211, P = 0.013) and lean tissue mass (miR-130b: r = 0.180, P = 0.03; miR-17-5p: r = 0.176, P = 0.004). miR-130b expression predicted frailty significantly (P = 0.016). Adipose miR-17-5p expression predicted 2-year all-cause survival (P = 0.020) and technique survival (P = 0.036), while miR-130b expression predicted incidence of major adverse cardiovascular events (P = 0.015). CONCLUSIONS Adipose miR-130b and miR-17-5p expressions correlated with body composition parameters, frailty, and predicted cardiovascular events and mortality in advanced CKD patients.
Collapse
Affiliation(s)
- Gordon Chun-Kau Chan
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Win Hlaing Than
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Bonnie Ching-Ha Kwan
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Ka-Bik Lai
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Ronald Cheong-Kin Chan
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jack Kit-Chung Ng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Kai-Ming Chow
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Phyllis Mei-Shan Cheng
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Man-Ching Law
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Chi-Bon Leung
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Philip Kam-Tao Li
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| | - Cheuk-Chun Szeto
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine & Therapeutics, The Chinese University of Hong Kong
| |
Collapse
|
20
|
Unfolded protein response during cardiovascular disorders: a tilt towards pro-survival and cellular homeostasis. Mol Cell Biochem 2021; 476:4061-4080. [PMID: 34259975 DOI: 10.1007/s11010-021-04223-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that orchestrates the production and proper assembly of an extensive types of secretory and membrane proteins. Endoplasmic reticulum stress is conventionally related to prolonged disruption in the protein folding machinery resulting in the accumulation of unfolded proteins in the ER. This disruption is often manifested due to oxidative stress, Ca2+ leakage, iron imbalance, disease conditions which in turn hampers the cellular homeostasis and induces cellular apoptosis. A mild ER stress is often reverted back to normal. However, cells retaliate to acute ER stress by activating the unfolded protein response (UPR) which comprises three signaling pathways, Activating transcription factor 6 (ATF6), inositol requiring enzyme 1 alpha (IRE1α), and protein kinase RNA-activated-like ER kinase (PERK). The UPR response participates in both protective and pro-apoptotic responses and not much is known about the mechanistic aspects of the switch from pro-survival to pro-apoptosis. When ER stress outpaces UPR response then cell apoptosis prevails which often leads to the development of various diseases including cardiomyopathies. Therefore, it is important to identify molecules that modulate the UPR that may serve as promising tools towards effective treatment of cardiovascular diseases. In this review, we elucidated the latest advances in construing the contribution imparted by the three arms of UPR to combat the adverse environment in the ER to restore cellular homeostasis during cardiomyopathies. We also summarized the various therapeutic agents that plays crucial role in tilting the UPR response towards pro-survival.
Collapse
|