1
|
Nooten SS, Korten H, Schmitt T, Kárpáti Z. The heat is on: reduced detection of floral scents after heatwaves in bumblebees. Proc Biol Sci 2024; 291:20240352. [PMID: 39191280 DOI: 10.1098/rspb.2024.0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/29/2024] [Accepted: 07/04/2024] [Indexed: 08/29/2024] Open
Abstract
Global climate change disrupts key ecological processes and biotic interactions. The recent increase in heatwave frequency and severity prompts the evaluation of physiological processes that ensure the maintenance of vital ecosystem services such as pollination. We used experimental heatwaves to determine how high temperatures affect the bumblebees' ability to detect floral scents. Heatwaves induced strong reductions in antennal responses to floral scents in both tested bumblebee species (Bombus terrestris and Bombus pascuorum). These reductions were generally stronger in workers than in males. Bumblebees showed no consistent pattern of recovery 24 h after heat events. Our results suggest that the projected increased frequency and severity of heatwaves may jeopardize bumblebee-mediated pollination services by disrupting the chemical communication between plants and pollinators. The reduced chemosensitivity can decrease the bumblebees' abilities to locate food sources and lead to declines in colonies and populations.
Collapse
Affiliation(s)
- Sabine S Nooten
- Animal Ecology and Tropical Biology, University of Würzburg , Würzburg, Germany
| | - Hanno Korten
- Animal Ecology and Tropical Biology, University of Würzburg , Würzburg, Germany
| | - Thomas Schmitt
- Animal Ecology and Tropical Biology, University of Würzburg , Würzburg, Germany
| | - Zsolt Kárpáti
- Animal Ecology and Tropical Biology, University of Würzburg , Würzburg, Germany
- Department of Chemical Ecology, Plant Protection Institute, Centre of Agricultural Research, HUN-REN , Budapest, Hungary
| |
Collapse
|
2
|
Yang CL, Meng JY, Zhou JY, Zhang JS, Zhang CY. Integrated transcriptomic and proteomic analyses reveal the molecular mechanism underlying the thermotolerant response of Spodoptera frugiperda. Int J Biol Macromol 2024; 264:130578. [PMID: 38432264 DOI: 10.1016/j.ijbiomac.2024.130578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae) is a highly destructive invasive pest with remarkable adaptability to extreme climatic conditions, posing a substantial global threat. Although the effects of temperature stress on the biological and ecological properties of S. frugiperda have been elucidated, the molecular mechanisms underlying its responses remain unclear. Herein, we combined transcriptomic and proteomic analyses to explore the key genes and proteins involved in thermotolerance regulation in S. frugiperda larvae at 42 °C. Overall, 1528 differentially expressed genes (DEGs) and 154 differentially expressed proteins (DEPs) were identified in S. frugiperda larvae under heat stress, including antioxidant enzymes, heat shock proteins (Hsps), cytochrome P450s, starch and sucrose metabolism genes, and insulin signaling pathway genes, indicating their involvement in heat tolerance regulation. Correlation analysis of DEGs and DEPs revealed that seven and eight had the same and opposite expression profiles, respectively. After nanocarrier-mediated RNA interference knockdown of SfHsp29, SfHsp20.4, SfCAT, and SfGST, the body weight and mortality of S. frugiperda larvae significantly decreased and increased under heat stress, respectively. This indicates that SfHsp29, SfHsp20.4, SfCAT, and SfGST play a crucial role in the thermotolerance of S. frugiperda larvae. These results provide insight into the mechanism of heat tolerance in S. frugiperda.
Collapse
Affiliation(s)
- Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou 550081, China
| | - Jian-Yun Zhou
- Guiyang Tobacco Company Kaiyang Branch, Guiyang, Guizhou 550300, China
| | - Jin-Shan Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
3
|
Zhang H, Sun F, Zhang W, Gao X, Du L, Yun X, Li Y, Li L, Pang B, Tan Y. Comparative Transcriptome Analysis of Galeruca daurica Reveals Cold Tolerance Mechanisms. Genes (Basel) 2023; 14:2177. [PMID: 38136998 PMCID: PMC10742598 DOI: 10.3390/genes14122177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Galeruca daurica (Joannis) is a pest species with serious outbreaks in the Inner Mongolian grasslands in recent years, and its larvae and eggs are extremely cold-tolerant. To gain a deeper understanding of the molecular mechanism of its cold-tolerant stress response, we performed de novo transcriptome assembly of G. daurica via RNA-Seq and compared the differentially expressed genes (DEGs) of first- and second-instar larvae grown and developed indoors and outdoors, respectively. The results show that cold tolerance in G. daurica is associated with changes in gene expression mainly involved in the glycolysis/gluconeogenesis pathway, the fatty acid biosynthesis pathway and the production of heat shock proteins (HSPs). Compared with the control group (indoor), the genes associated with gluconeogenesis, fatty acid biosynthesis and HSP production were up-regulated in the larvae grown and developed outdoors. While the changes in these genes were related to the physiological metabolism and growth of insects, it was hypothesized that the proteins encoded by these genes play an important role in cold tolerance in insects. In addition, we also investigated the expression of genes related to the metabolic pathway of HSPs, and the results show that the HSP-related genes were significantly up-regulated in the larvae of G. daurica grown and developed outdoors compared with the indoor control group. Finally, we chose to induce significant expression differences in the Hsp70 gene (Hsp70A1, Hsp70-2 and Hsp70-3) via RNAi to further illustrate the role of heat stress proteins in cold tolerance on G. daurica larvae. The results show that separate and mixed injections of dsHSP70A1, dsHsp70-2 and dsHsp70-3 significantly reduced expression levels of the target genes in G. daurica larvae. The super-cooling point (SCP) and the body fluid freezing point (FP) of the test larvae were determined after RNAi using the thermocouple method, and it was found that silencing the Hsp70 genes significantly increased the SCP and FP of G. daurica larvae, which validated the role of heat shock proteins in the cold resistance of G. daurica larvae. Our findings provide an important theoretical basis for further excavating the key genes and proteins in response to extremely cold environments and analyzing the molecular mechanism of cold adaptation in insects in harsh environments.
Collapse
Affiliation(s)
- Hongling Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (H.Z.); (F.S.); (W.Z.); (Y.L.); (L.L.); (B.P.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Feilong Sun
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (H.Z.); (F.S.); (W.Z.); (Y.L.); (L.L.); (B.P.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Wenbing Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (H.Z.); (F.S.); (W.Z.); (Y.L.); (L.L.); (B.P.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Xia Gao
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010010, China;
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010020, China
| | - Lei Du
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (L.D.); (X.Y.)
| | - Xiaopeng Yun
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (L.D.); (X.Y.)
| | - Yanyan Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (H.Z.); (F.S.); (W.Z.); (Y.L.); (L.L.); (B.P.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Ling Li
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (H.Z.); (F.S.); (W.Z.); (Y.L.); (L.L.); (B.P.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Baoping Pang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (H.Z.); (F.S.); (W.Z.); (Y.L.); (L.L.); (B.P.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Yao Tan
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010019, China; (H.Z.); (F.S.); (W.Z.); (Y.L.); (L.L.); (B.P.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010010, China;
| |
Collapse
|
4
|
Zhao S, Liu Y, Li H, Li Z, Hao D. Spatiotemporal Patterns of Five Small Heat Shock Protein Genes in Hyphantria cunea in Response to Thermal Stress. Int J Mol Sci 2023; 24:15176. [PMID: 37894858 PMCID: PMC10606853 DOI: 10.3390/ijms242015176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Hyphantria cunea (Drury), a destructive polyphagous pest, has been spreading southward after invading northern China, which indicates that this insect species is facing a huge thermal challenge. Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones that protect insects from heat stress damage. In order to explore the role of sHSPs in the thermotolerance of H. cunea, five novel sHSP genes of H. cunea were cloned, including an orthologous gene (HcHSP21.4) and four species-specific sHSP genes (HcHSP18.9, HcHSP20.1, HcHSP21.5, and HcHSP29.8). Bioinformatics analysis showed that the proteins encoded by these five HcHSPs contained typical α-crystallin domains. Quantitative real-time PCR analysis revealed the ubiquitous expression of all HcHSPs across all developmental stages of H. cunea, with the highest expression levels in pupae and adults. Four species-specific HcHSPs were sensitive to high temperatures. The expression levels of HcHSPs were significantly up-regulated under heat stress and increased with increasing temperature. The expression levels of HcHSPs in eggs exhibited an initial up-regulation in response to a temperature of 40 °C. In other developmental stages, the transcription of HcHSPs was immediately up-regulated at 30 °C or 35 °C. HcHSPs transcripts were abundant in the cuticle before and after heat shock. The expression of HcHSP21.4 showed weak responses to heat stress and constitutive expression in the tissues tested. These results suggest that most of the HcHSPs are involved in high-temperature response and may also have functions in the normal development and reproduction of H. cunea.
Collapse
Affiliation(s)
- Shiyue Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.Z.); (Y.L.); (H.L.); (Z.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yukun Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.Z.); (Y.L.); (H.L.); (Z.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.Z.); (Y.L.); (H.L.); (Z.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zichun Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.Z.); (Y.L.); (H.L.); (Z.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.Z.); (Y.L.); (H.L.); (Z.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Huang Y, Zhang Y, Niu X, Sun Y, Wang H, Guo X, Xu B, Wang C. AccsHSP21.7 enhances the antioxidant capacity of Apis cerana cerana. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37029991 DOI: 10.1002/jsfa.12614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/31/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The widespread use of glyphosate has many adverse effects on Apis cerana cerana. Due to the incomplete understanding of the molecular mechanisms of glyphosate toxicity, there are no available methods for mitigating the threat of glyphosate to Apis cerana cerana. Small heat shock proteins (sHSPs) play an important role in resisting oxidative stress, but their mechanism of action in Apis cerana cerana remains unclear. RESULTS In this experiment, we cloned and identified AccsHSP21.7. Studies have shown that AccsHSP21.7 contains binding motifs for various transcription factors related to oxidative stress. Abiotic stresses induced the expression of AccsHSP21.7. Bacteriostatic testing of a recombinant AccsHSP21.7 protein proved that Escherichia coli overexpressing AccsHSP21.7 showed increased resistance to oxidative stress. Knocking down the AccsHSP21.7 gene caused significant damage to midgut cells, which seriously disrupted the antioxidant system in Apis cerana cerana and greatly increased mortality under glyphosate stress. CONCLUSION This study investigated the relationship between antioxidant regulation and the AccsHSP21.7 gene at the molecular level, and the results have guiding significance for the improvement of stress resistance in Apis cerana cerana. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanyuan Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Yuanying Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Xiaojing Niu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Yunhao Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| |
Collapse
|
6
|
Fu J, Li L, Dai C, Zhang Y, Hu Y, Hu C, Li H. Transcriptomic analysis of Mythimna separata ovaries and identification of genes involved in reproduction. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY PART D: GENOMICS AND PROTEOMICS 2023; 46:101075. [PMID: 37031498 DOI: 10.1016/j.cbd.2023.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The migratory insect Mythimna separata is a major pest of grain crops in Asia. Unfortunately, the molecular mechanisms that control and regulate reproduction in this species remain unclear. In this study, transcriptome sequencing was utilized to identify genes associated with ovary development and oogenesis. Clean sequences totaling 117.71 Gb were assembled into 178,534 unigenes with a mean length of 647.37 bp and N50 length of 837 bp. Transcriptome analysis showed that 7921 unigenes were significantly expressed in ovaries with 4403 and 3518 unigenes up- and down-regulated, respectively. Enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes database suggested that 729 differentially expressed genes were significantly enriched in the top 20 pathways (q-values <0.05). Twenty genes were associated with ovary development and oogenesis and included lipases, Nanos, small heat shock proteins (sHsps) and histones; these were further verified by qRT-PCR and may play essential roles in M. separata reproduction. Collectively, our findings reveal underlying mechanisms of M.separata reproduction and may lead to RNAi-based management strategies targeting reproductive physiology.
Collapse
|
7
|
Li M, Tang T, Yuan F, Zhang Y, Li F, Liu F. Protective effects of small heat shock proteins in Daphnia magna against heavy metal exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157565. [PMID: 35907523 DOI: 10.1016/j.scitotenv.2022.157565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Daphnia magna is one of the most commonly used model organisms to assess toxicity of heavy metal and other xenobiotics. However, the lack of knowledge about important stress-resistant molecules limits our understanding of the alteration of phenotypic and physiological traits of D. magna upon stress exposures. In this study, we focused on a chaperone family of small heat shock protein (sHSP) that has been found in archaea, bacteria and eukaryotes and plays an important role in stress tolerance. A total of eleven sHSP genes (termed DmsHSP1 - DmsHSP11) were identified from the D. magna genome, whose expression profiles during exposure to heavy metal (Cd2+, Cu2+ and Zn2+) and a few other potential pollutants were evaluated via qRT-PCR and RNA-Seq analysis. The results highlighted the predominant role of DmsHSP1 with the highest basal expression level in adults and robust upregulation upon exposure to heavy metals (Cu2+ > Cd2+ > Zn2+). In vivo, recombinant protein rDmsHSP1-21 and rDmsHSP11-12.8 could not only prevent model substrates agglutination induced by heavy metals or reducer dithiotreitol (DTT), but also protect tissue proteins and enzymes from denaturation and inactivation caused by heavy metals or high temperature. Ectopically expression of DmsHSP1-21 or DmsHSP11-12.8 in E. coli conferred host enhanced resistance against various abiotic stresses including Cd2+, Cu2+ and phenazine methosulfate (PMS). Knockdown of DmsHSP1-21 by RNAi, but not for DmsHSP11-12.8, significantly increased the vulnerability of D. magna to heavy metal exposure. Our work provides systematic information on the evolution and function of sHSPs in D. magna and leads to important insights into the mechanisms by which D. magna survive in adverse environments.
Collapse
Affiliation(s)
- Muyi Li
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ting Tang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengyu Yuan
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuming Zhang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengchao Li
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengsong Liu
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
8
|
Ruan HY, Meng JY, Yang CL, Zhou L, Zhang CY. Identification of Six Small Heat Shock Protein Genes in Ostrinia furnacalis (Lepidoptera: Pyralidae) and Analysis of Their Expression Patterns in Response to Environmental Stressors. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:7. [PMID: 36469365 PMCID: PMC9721345 DOI: 10.1093/jisesa/ieac069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 06/17/2023]
Abstract
Ostrinia furnacalis (Guenée) is a major insect pest in maize production that is highly adaptable to the environment. Small heat shock proteins (sHsps) are a class of chaperone proteins that play an important role in insect responses to various environmental stresses. The present study aimed to clarify the responses of six O. furnacalis sHsps to environmental stressors. In particular, we cloned six sHsp genes, namely, OfHsp24.2, OfHsp21.3, OfHsp20.7, OfHsp21.8, OfHsp29.7, and OfHsp19.9, from O. furnacalis. The putative proteins encoded by these genes contained a typical α-crystallin domain. Real-time quantitative polymerase chain reaction was used to analyze the differences in the expression of these genes at different developmental stages, in different tissues of male and female adults, and in O. furnacalis under UV-A and extreme temperature stresses. The six OfsHsp genes were expressed at significantly different levels based on the developmental stage and tissue type in male and female adults. Furthermore, all OfsHsp genes were significantly upregulated in both male and female adults under extreme temperature and UV-A stresses. Thus, O. furnacalis OfsHsp genes play important and unique regulatory roles in the developmental stages of the insect and in response to various environmental stressors.
Collapse
Affiliation(s)
- Hong-Yun Ruan
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou 550081, People’s Republic of China
| | - Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | - Lv Zhou
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, People’s Republic of China
| | | |
Collapse
|
9
|
Yan XR, Wang ZY, Feng SQ, Zhao ZH, Li ZH. Impact of Temperature Change on the Fall Armyworm, Spodoptera frugiperda under Global Climate Change. INSECTS 2022; 13:981. [PMID: 36354805 PMCID: PMC9693636 DOI: 10.3390/insects13110981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith, 1797), known as an important agricultural pest around the world, is indigenous to the tropical-subtropical regions in the Western Hemisphere, although its distribution has expanded over large parts of America, Africa, Asia and Oceania in the last few years. The pest causes considerable costs annually coupled with its strong invasion propensity. Temperature is identified as the dominant abiotic factor affecting herbivorous insects. Several efforts have reported that temperature directly or indirectly influences the geographic distribution, phenology and natural enemies of the poikilothermal FAW, and thus may affect the damage to crops, e.g., the increased developmental rate accelerates the intake of crops at higher temperatures. Under some extreme temperatures, the FAW is likely to regulate various genes expression in response to environmental changes, which causes a wider viability and possibility of invasion threat. Therefore, this paper seeks to review and critically consider the variations of developmental indicators, the relationships between the FAW and its natural enemies and the temperature tolerance throughout its developmental stage at varying levels of heat/cold stress. Based on this, we discuss more environmentally friendly and economical control measures, we put forward future challenges facing climate change, we further offer statistical basics and instrumental guidance significance for informing FAW pest forecasting, risk analyses and a comprehensive management program for effective control globally.
Collapse
Affiliation(s)
- Xiao-Rui Yan
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhen-Ying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shi-Qian Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zi-Hua Zhao
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhi-Hong Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
10
|
Yang CL, Meng JY, Zhou L, Zhang CY. Induced heat shock protein 70 confers biological tolerance in UV-B stress-adapted Myzus persicae (Hemiptera). Int J Biol Macromol 2022; 220:1146-1154. [PMID: 36041575 DOI: 10.1016/j.ijbiomac.2022.08.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022]
Abstract
As an environmental stress factor, ultraviolet-B (UV-B) radiation directly affects insect growth, development, and reproduction. Heat shock protein 70s kDa (Hsp70s) plays an important role in the environmental adaptation of insects. To determine the role of MpHsp70s in the UV-B tolerance of Myzus persicae (Sulzer), we identified the complete complementary DNA sequences of seven MpHsp70s. They were found to be ubiquitously expressed during different developmental stages and were highly expressed in second-instar nymphs and wingless adults. The expression levels of the MpHsp70s were significantly upregulated when exposed to different durations of UV-B stress. Nanocarrier-mediated dsMpHsp70 suppressed the expression of the MpHsp70s and reduced the body length, weight, survival rate, and fecundity of M. persicae under UV-B exposure. When the combinational RNAi approach was adopted, the effects on the survival rate and fecundity were greater under UV-B stress, except for MpHsc70-4. These results suggest that MpHsp70s are essential for the resistance of M. persicae to UV-B stress.
Collapse
Affiliation(s)
- Chang-Li Yang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, Guizhou 550081, China
| | - Lv Zhou
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chang-Yu Zhang
- Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
11
|
Sun Y, Huang J, Wang Z, Pan N, Wan C. Identification of Microproteins in Saccharomyces cerevisiae under Different Stress Conditions. J Proteome Res 2022; 21:1939-1947. [PMID: 35838590 DOI: 10.1021/acs.jproteome.2c00212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small open reading frame-encoded peptides (SEPs) are microproteins with a length of 100 amino acids or less, which may play a critical role in maintaining cell homeostasis under stress. Therefore, we used mass spectrometry-based proteomics to explore microproteins potentially involved in cellular stress responses in Saccharomyces cerevisiae. A total of 225 microproteins with 1920 unique peptides were identified under six culture conditions: normal, oxidation, starvation, ultraviolet radiation, heat shock, and heat shock with starvation. Among these microproteins, we found 70 SEPs with 75 unique peptides. The annotated microproteins are involved in stress-related processes, such as cell redox reactions, cell wall modification, protein folding and degradation, and DNA damage repair. It suggests that SEPs may also play similar functions under stress conditions. For example, SEP IP_008057, translated from a short coding sequence of YJL159W, may play a role in heat shock. This study identified stress-responsive SEPs in S. cerevisiae and provided valuable information to determine the functions of these proteins, which enrich the genome and proteome of S. cerevisiae and show clues to improving the stress tolerance of S. cerevisiae.
Collapse
Affiliation(s)
- Yan Sun
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Jiangmei Huang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Zhiwei Wang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Ni Pan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
12
|
Miano FN, Jiang T, Zhang J, Zhang WN, Peng Y, Xiao HJ. Identification and up-regulation of three small heat shock proteins in summer and winter diapause in response to temperature stress in Pieris melete. Int J Biol Macromol 2022; 209:1144-1154. [PMID: 35461858 DOI: 10.1016/j.ijbiomac.2022.04.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/05/2022]
Abstract
Small heat shock proteins (sHSPs) are conserved proteins that play key roles in organismal adaptation to adversity stressors. However, little is known about sHSPs during summer diapause. Three sHSP genes: PmHSP19.5, PmHSP19.9, and PmHSP20.0 were identified and cloned from Pieris melete. Sequence alignment and phylogenetic analysis revealed that the three sHSPs have a typical, conserved α-crystallin domain. PmHSP19.5 and PmHSP20.0 were both upregulated in summer diapause (SD) and winter diapause (WD), compared to non-diapause (ND) pupae. All three sHSPs were upregulated and showed similar trends in response to thermal stress. The 0 °C chilling treatment slightly affected sHSP transcripts in ND pupae, whereas both PmHSP19.5 and PmHSP19.9 were upregulated and PmHSP20.0 was downregulated after chilling at 0 °C for 24-96 h in both SD and WD pupae. The transcripts of PmHSP19.5 and PmHSP19.9 were significantly induced at 31 °C for 30 d in SD and WD pupae. The PmHSP20.0 transcript gradually decreased during the SD and WD programs. This is the first time that sHSPs have been linked to both overwintering and summer diapause processes. These findings suggest that sHSPs are involved in both summer and winter diapause maintenance and play a possible key role in temperature stress.
Collapse
Affiliation(s)
- Falak Naz Miano
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ting Jiang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wan-Na Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yingchuan Peng
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Hai-Jun Xiao
- Institute of Entomology, Jiangxi Agricultural University, Nanchang 330045, China; School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
13
|
de la Fuente M, Novo M. Understanding Diversity, Evolution, and Structure of Small Heat Shock Proteins in Annelida Through in Silico Analyses. Front Physiol 2022; 13:817272. [PMID: 35530508 PMCID: PMC9075518 DOI: 10.3389/fphys.2022.817272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Small heat shock proteins (sHsps) are oligomeric stress proteins characterized by an α-crystallin domain (ACD). These proteins are localized in different subcellular compartments and play critical roles in the stress physiology of tissues, organs, and whole multicellular eukaryotes. They are ubiquitous proteins found in all living organisms, from bacteria to mammals, but they have never been studied in annelids. Here, a data set of 23 species spanning the annelid tree of life, including mostly transcriptomes but also two genomes, was interrogated and 228 novel putative sHsps were identified and manually curated. The analysis revealed very high protein diversity and showed that a significant number of sHsps have a particular dimeric architecture consisting of two tandemly repeated ACDs. The phylogenetic analysis distinguished three main clusters, two of them containing both monomeric sHsps, and ACDs located downstream in the dimeric sHsps, and the other one comprising the upstream ACDs from those dimeric forms. Our results support an evolutionary history of these proteins based on duplication events prior to the Spiralia split. Monomeric sHsps 76) were further divided into five subclusters. Physicochemical properties, subcellular location predictions, and sequence conservation analyses provided insights into the differentiating elements of these putative functional groups. Strikingly, three of those subclusters included sHsps with features typical of metazoans, while the other two presented characteristics resembling non-metazoan proteins. This study provides a solid background for further research on the diversity, evolution, and function in the family of the sHsps. The characterized annelid sHsps are disclosed as essential for improving our understanding of this important family of proteins and their pleotropic functions. The features and the great diversity of annelid sHsps position them as potential powerful molecular biomarkers of environmental stress for acting as prognostic tool in a diverse range of environments.
Collapse
Affiliation(s)
- Mercedes de la Fuente
- Departamento de Ciencias y Técnicas Fisicoquímicas, Universidad Nacional de Educación a Distancia (UNED), Las Rozas, Spain
- *Correspondence: Mercedes de la Fuente,
| | - Marta Novo
- Faculty of Biology, Biodiversity, Ecology and Evolution Department, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
14
|
Leask M, Lovegrove M, Walker A, Duncan E, Dearden P. Evolution and genomic organization of the insect sHSP gene cluster and coordinate regulation in phenotypic plasticity. BMC Ecol Evol 2021; 21:154. [PMID: 34348652 PMCID: PMC8336396 DOI: 10.1186/s12862-021-01885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Conserved syntenic gene complexes are rare in Arthropods and likely only retained due to functional constraint. Numerous sHSPs have been identified in the genomes of insects, some of which are located clustered in close proximity. Previous phylogenetic analyses of these clustered sHSP have been limited to a small number of holometabolous insect species and have not determined the pattern of evolution of the clustered sHSP genes (sHSP-C) in insect or Arthropod lineages. Results Using eight genomes from representative insect orders and three non-insect arthropod genomes we have identified that a syntenic cluster of sHSPs (sHSP-C) is a hallmark of most Arthropod genomes. Using 11 genomes from Hymenopteran species our phylogenetic analyses have refined the evolution of the sHSP-C in Hymenoptera and found that the sHSP-C is order-specific with evidence of birth-and-death evolution in the hymenopteran lineage. Finally we have shown that the honeybee sHSP-C is co-ordinately expressed and is marked by genomic features, including H3K27me3 histone marks consistent with coordinate regulation, during honeybee ovary activation. Conclusions The syntenic sHSP-C is present in most insect genomes, and its conserved coordinate expression and regulation implies that it is an integral genomic component of environmental response in arthropods. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01885-8.
Collapse
Affiliation(s)
- Megan Leask
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Mackenzie Lovegrove
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Abigail Walker
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Elizabeth Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter Dearden
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|