1
|
Low J, Altman R, Badolian A, Cuaresma AB, Briseño C, Keshet U, Fiehn O, Stahelin RV, Nikolaidis N. Heat-Induced Phosphatidylserine Changes Drive HSPA1A's Plasma Membrane Localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626454. [PMID: 39713339 PMCID: PMC11661080 DOI: 10.1101/2024.12.02.626454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Heat shock protein A1A (HSPA1A) is a molecular chaperone crucial in cell survival. In addition to its cytosolic functions, HSPA1A translocates to heat-shocked and cancer cells' plasma membrane (PM). In cancer, PM-localized HSPA1A (mHSPA1A) is associated with increased tumor aggressiveness and therapeutic resistance, suggesting that preventing its membrane localization could have therapeutic value. This translocation depends on HSPA1A's interaction with PM phospholipids, including phosphatidylserine (PS). Although PS binding regulates HSPA1A's membrane localization, the exact trigger for this movement remains unclear. Given that lipid modifications are a cancer hallmark, we hypothesized that PS is a crucial lipid driving HSPA1A translocation and that heat-induced changes in PS levels trigger HSPA1A's PM localization in response to heat stress. We tested this hypothesis using pharmacological inhibition and RNA interference (RNAi) targeting PS synthesis, combined with confocal microscopy, lipidomics, and western blotting. Lipidomic analysis and PS-specific biosensors confirmed a heat shock-induced PS increase, peaking immediately post-stress. Inhibition of PS synthesis with fendiline and RNAi significantly reduced HSPA1A's PM localization, while depletion of cholesterol or fatty acids had minimal effects, confirming specificity for PS. Further experiments showed that PS saturation and elongation changes did not significantly impact HSPA1A's PM localization, indicating that the total PS increase, rather than specific PS species, is the critical factor. These findings reshape current models of HSPA1A trafficking, demonstrating that PS is a crucial regulator of HSPA1A's membrane translocation during the heat shock response. This work offers new insights into lipid-regulated protein trafficking and highlights the importance of PS in controlling cellular responses to stress.
Collapse
|
2
|
Liu J, Quan Y, Tong H, Zhu Y, Shi X, Liu Y, Cheng G. Insights into mosquito-borne arbovirus receptors. CELL INSIGHT 2024; 3:100196. [PMID: 39391003 PMCID: PMC11462183 DOI: 10.1016/j.cellin.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 10/12/2024]
Abstract
The increasing global prevalence of mosquito-borne viruses has emerged as a significant threat to human health and life. Identifying receptors for these viruses is crucial for improving our knowledge of viral pathogenesis and developing effective antiviral strategies. The widespread application of CRISPR-Cas9 screening have led to the discovery of many mosquito-borne virus receptors. The revealed structures of virus-receptor complexes also provide important information for understanding their interaction mechanisms. This review provides a comprehensive summary of both conventional and novel approaches for identifying new viral receptors and the putative entry factors of the most prevalent mosquito-borne viruses within the Flaviviridae, Togaviridae, and Bunyavirales. At the same time, we emphasize the common receptors utilized by these viruses for entry into both vertebrate hosts and mosquito vectors. We discuss promising avenues for developing anti-mosquito-borne viral strategies that target these receptors. Notably, targeting universal receptors of specific mosquito-borne viruses in both vertebrates and mosquitoes offers dual benefits for disease prevention. Additionally, the widespread use of AI-based machine learning and protein structure prediction will accelerate the identification of new viral receptors and provide new avenues for antiviral drug discovery.
Collapse
Affiliation(s)
- Jianying Liu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Yixin Quan
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
- School of Life Science, Southern University of Science and Technology, Shenzhen, 518052, China
| | - Hua Tong
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yang Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
3
|
Svirshchevskaya EV, Kostenko VV, Boyko AA, Shevtsov M, Kholodenko RV, Grechikhina MV, Gracheva IA, Fedorov AY, Sapozhnikov AM. Core-Shell Chitosan Particles Targeting Membrane-Bound Heat Shock Protein 70 for Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1873. [PMID: 39683266 DOI: 10.3390/nano14231873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Anti-cancer targeted therapy is a promising approach. However, the identification of target molecules over-expressed in a wide range of tumors remains a significant challenge. The aim of this study was to analyze the expression of cell membrane-exposed heat shock protein 70 kDa (mHSP70) on different tumor cells and to develop a nanoscale delivery system based on a monoclonal antibody (mAb) that recognizes mHSP70 and uses chitosan core-shell nanoparticles (NPs). Several types of tumor cells (breast, pancreas, colon, prostate cancers, and some lymphomas) expressed mHSP70 as was determined by flow cytometry and confocal microscopy both in 2D and 3D cultures. Core NPs were formed by chitosan (C) conjugated to allocolchicinoid, which was used as a model drug (D). mAbs (A) targeting mHSP70 were complexed with succinylchitosan and used as NP shells forming final CAD-NPs. These NPs were characterized by size, charge, and functional activity. CAD-NPs were shown to have additional toxicity in comparison with CD-NPs in mHSP7-positive cells. Taken collectively, this study shows that mAb to mHSP70 can be used as a targeting vector in antitumor therapy.
Collapse
Affiliation(s)
- Elena V Svirshchevskaya
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Valentina V Kostenko
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Anna A Boyko
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Maxim Shevtsov
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 St. Petersburg, Russia
| | - Roman V Kholodenko
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Maria V Grechikhina
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Iuliia A Gracheva
- Department of Organic Chemistry, Nizhni Novgorod State University, 603950 Nizhni Novgorod, Russia
| | - Alexey Yu Fedorov
- Department of Organic Chemistry, Nizhni Novgorod State University, 603950 Nizhni Novgorod, Russia
| | - Alexander M Sapozhnikov
- Laboratory of Cell Interactions, Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
4
|
Secco V, Tiago T, Staats R, Preet S, Chia S, Vendruscolo M, Carra S. HSPB6: A lipid-dependent molecular chaperone inhibits α-synuclein aggregation. iScience 2024; 27:110657. [PMID: 39280615 PMCID: PMC11402235 DOI: 10.1016/j.isci.2024.110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 07/31/2024] [Indexed: 09/18/2024] Open
Abstract
The process of protein misfolding and aggregation is associated with various cytotoxic effects. Understanding how this phenomenon is regulated by the protein homeostasis system, however, is difficult, since it takes place through a complex non-linear network of coupled microscopic steps, including primary nucleation, fibril elongation, and secondary nucleation, which depend on environmental factors. To address this problem, we studied how the aggregation of α-synuclein, a protein associated with Parkinson's disease, is modulated by molecular chaperones and lipid membranes. We focused on small heat shock proteins (sHSPs/HSPBs), which interact with proteins and lipids and are upregulated during aging, a major risk factor for protein misfolding diseases. HSPBs act on different microscopic steps to prevent α-synuclein aggregation, with HSPB6 showing a lipid-dependent chaperone activity. Our findings provide an example of how HSPBs diversified their mechanisms of action to reach an efficient regulation of protein misfolding and aggregation within the complex cellular environment.
Collapse
Affiliation(s)
- Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tatiana Tiago
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roxine Staats
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Swapan Preet
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Sean Chia
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Shevtsov M, Bobkov D, Yudintceva N, Likhomanova R, Kim A, Fedorov E, Fedorov V, Mikhailova N, Oganesyan E, Shabelnikov S, Rozanov O, Garaev T, Aksenov N, Shatrova A, Ten A, Nechaeva A, Goncharova D, Ziganshin R, Lukacheva A, Sitovskaya D, Ulitin A, Pitkin E, Samochernykh K, Shlyakhto E, Combs SE. Membrane-bound Heat Shock Protein mHsp70 Is Required for Migration and Invasion of Brain Tumors. CANCER RESEARCH COMMUNICATIONS 2024; 4:2025-2044. [PMID: 39015084 PMCID: PMC11317918 DOI: 10.1158/2767-9764.crc-24-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Molecular chaperones, especially 70 kDa heat shock protein, in addition to their intracellular localization in cancer cells, can be exposed on the surface of the plasma membrane. We report that the membrane-associated chaperone mHsp70 of malignant brain tumors is required for high migratory and invasive activity of cancer cells. Live-cell inverted confocal microscopy of tumor samples from adult (n = 23) and pediatric (n = 9) neurooncologic patients showed pronounced protein expression on the membrane, especially in the perifocal zone. Mass spectrometry analysis of lipid rafts isolated from tumor cells confirmed the presence of the protein in the chaperone cluster (including representatives of other families, such as Hsp70, Hsc70, Hsp105, and Hsp90), which in turn, during interactome analysis, was associated with proteins involved in cell migration (e.g., Rac1, RhoC, and myosin-9). The use of small-molecule inhibitors of HSP70 (PES and JG98) led to a substantial decrease in the invasive potential of cells isolated from a tumor sample of patients, which indicates the role of the chaperone in invasion. Moreover, the use of HSP70 inhibitors in animal models of orthotopic brain tumors significantly delayed tumor progression, which was accompanied by an increase in overall survival. Data demonstrate that chaperone inhibitors, particularly JG98, disrupt the function of mHsp70, thereby providing an opportunity to better understand the diverse functions of this protein and offer aid in the development of novel cancer therapies. SIGNIFICANCE Membrane-bound mHsp70 is required for brain tumor cell migration and invasion and therefore could be employed as a target for anticancer therapies.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia.
| | - Danila Bobkov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia.
| | - Natalia Yudintceva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Ruslana Likhomanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Alexander Kim
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Evegeniy Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Viacheslav Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Natalia Mikhailova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Elena Oganesyan
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Sergey Shabelnikov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Oleg Rozanov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Timur Garaev
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Nikolay Aksenov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Alla Shatrova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok, Russia.
| | - Anastasiya Nechaeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Daria Goncharova
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia.
| | - Anastasiya Lukacheva
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.
| | - Daria Sitovskaya
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Alexey Ulitin
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Emil Pitkin
- Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
- Polenov Neurosurgical Institute, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Evgeny Shlyakhto
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Stephanie E. Combs
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| |
Collapse
|
6
|
Calabrese V, Osakabe N, Siracusa R, Modafferi S, Di Paola R, Cuzzocrea S, Jacob UM, Fritsch T, Abdelhameed AS, Rashan L, Wenzel U, Franceschi C, Calabrese EJ. Transgenerational hormesis in healthy aging and antiaging medicine from bench to clinics: Role of food components. Mech Ageing Dev 2024; 220:111960. [PMID: 38971236 DOI: 10.1016/j.mad.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Tokyo, Japan.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Luay Rashan
- Biodiversity Unit, Dhofar University, Salalah, Oman
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | | | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Tukaj S. Dual role of autoantibodies to heat shock proteins in autoimmune diseases. Front Immunol 2024; 15:1421528. [PMID: 38903496 PMCID: PMC11187000 DOI: 10.3389/fimmu.2024.1421528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Autoimmune diseases are characterized by the recognition of self-antigens (autoantigens) by immune system cells. Loss of immunological tolerance may lead to the generation of autoantibodies and, consequently, tissue damage. It has already been proven that highly immunogenic bacterial and autologous extracellular heat shock proteins (eHsps) interact with immune cells of the innate and adaptive arms of the immune system. The latter interactions may stimulate a humoral (auto)immune response and lead to the generation of anti-Hsps (auto)antibodies. Although circulating levels of anti-Hsps autoantibodies are often elevated in patients suffering from multiple inflammatory and autoimmune diseases, their role in the development of pathological conditions is not fully established. This mini-review presents the dual role of anti-Hsps autoantibodies - protective or pathogenic - in the context of the development of selected autoimmune diseases.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
8
|
Ujcikova H, Lee YS, Roubalova L, Svoboda P. The impact of multifunctional enkephalin analogs and morphine on the protein changes in crude membrane fractions isolated from the rat brain cortex and hippocampus. Peptides 2024; 174:171165. [PMID: 38307418 DOI: 10.1016/j.peptides.2024.171165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Endogenous opioid peptides serve as potent analgesics through the opioid receptor (OR) activation. However, they often suffer from poor metabolic stability, low lipophilicity, and low blood-brain barrier permeability. Researchers have developed many strategies to overcome the drawbacks of current pain medications and unwanted biological effects produced by the interaction with opioid receptors. Here, we tested multifunctional enkephalin analogs LYS739 (MOR/DOR agonist and KOR partial antagonist) and LYS744 (MOR/DOR agonist and KOR full antagonist) under in vivo conditions in comparison with MOR agonist, morphine. We applied 2D electrophoretic resolution to investigate differences in proteome profiles of crude membrane (CM) fractions isolated from the rat brain cortex and hippocampus exposed to the drugs (10 mg/kg, seven days). Our results have shown that treatment with analog LYS739 induced the most protein changes in cortical and hippocampal samples. The identified proteins were mainly associated with energy metabolism, cell shape and movement, apoptosis, protein folding, regulation of redox homeostasis, and signal transduction. Among these, the isoform of mitochondrial ATP synthase subunit beta (ATP5F1B) was the only protein upregulation in the hippocampus but not in the brain cortex. Contrarily, the administration of analog LYS744 caused a small number of protein alterations in both brain parts. Our results indicate that the KOR full antagonism, together with MOR/DOR agonism of multifunctional opioid ligands, can be beneficial in treating chronic pain states by reducing changes in protein expression levels but retaining analgesic efficacy.
Collapse
Affiliation(s)
- Hana Ujcikova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic.
| | - Yeon Sun Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Lenka Roubalova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Petr Svoboda
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| |
Collapse
|
9
|
Bourn JJ, Dorrity MW. Degrees of freedom: temperature's influence on developmental rate. Curr Opin Genet Dev 2024; 85:102155. [PMID: 38335718 DOI: 10.1016/j.gde.2024.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
Temperature exerts a fundamental influence across scales of biology, from the biophysical nature of molecules, to the sensitivity of cells, and the coordinated progression of development in embryos. Species-specific developmental rates and temperature-induced acceleration of development indicate that these sensing mechanisms are harnessed to influence developmental dynamics. Tracing how temperature sensitivity propagates through biological scales to influence the pace of development can therefore reveal how embryogenesis remains robust to environmental influences. Cellular protein homeostasis (proteostasis), and cellular metabolic rate are linked to both temperature-induced and species-specific developmental tempos in specific cell types, hinting toward generalized mechanisms of timing control. New methods to extract timing information from single-cell profiling experiments are driving further progress in understanding how mechanisms of temperature sensitivity can direct cell-autonomous responses, coordination across cell types, and evolutionary modifications of developmental timing.
Collapse
Affiliation(s)
- Jess J Bourn
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany. https://twitter.com/@bournsupremacy
| | - Michael W Dorrity
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
10
|
Dai C, Guo X, Pan Z, Wan C, Yang D, Li Y, Lian C, An Y, Zhang T, Yang F, Zhu L, Yin F, Wang R, Li Z. Pyridinium-Based Strategy for a Bioorthogonal Conjugation-Assisted Purification Method for Profiling Cell Surface Proteome. Anal Chem 2023; 95:17125-17134. [PMID: 37934015 DOI: 10.1021/acs.analchem.3c04279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Cell surface proteins (CSPs) are valuable targets for therapeutic agents, but achieving highly selective CSP enrichment in cellular physiology remains a technical challenge. To address this challenge, we propose a newly developed sulfo-pyridinium ester (SPE) cross-linking probe, followed by two-step imaging and enrichment. The SPE probe showed higher efficiency in labeling proteins than similar NHS esters at the level of cell lysates and demonstrated specificity for Lys in competitive experiments. More importantly, this probe could selectively label the cell membranes in cell imaging with only negligible labeling of the intracellular compartment. Moreover, we successfully performed this strategy on MCF-7 live cells to label 425 unique CSPs from 1162 labeled proteins. Finally, we employed our probe to label the CSPs of insulin-cultured MCF-7, revealing several cell surface targets of key functional biomarkers and insulin-associated pathogenesis. The above results demonstrate that the SPE method provides a promising tool for the selective labeling of cell surface proteins and monitoring transient cell surface events.
Collapse
Affiliation(s)
- Chuan Dai
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
- Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, P. R. China
| | - Xiaochun Guo
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Zhuoheng Pan
- School of Pharmacy, Macau University of Science and Technology, Taipa 999078, Macau, P. R. China
| | - Chuan Wan
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Dongyan Yang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Yongli Li
- China Medical System Holdings Limited, Shenzhen 518055, P. R. China
| | - Chenshan Lian
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Yuhao An
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Tuanjie Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Fadeng Yang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Lizhi Zhu
- Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, P. R. China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
| | - Zigang Li
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, P. R. China
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, Sichuan, P. R. China
| |
Collapse
|
11
|
Makky A, Czajor J, Konovalov O, Zhakhov A, Ischenko A, Behl A, Singh S, Abuillan W, Shevtsov M. X-ray reflectivity study of the heat shock protein Hsp70 interaction with an artificial cell membrane model. Sci Rep 2023; 13:19157. [PMID: 37932378 PMCID: PMC10628213 DOI: 10.1038/s41598-023-46066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Membrane-bound heat shock protein 70 (Hsp70) apart from its intracellular localization was shown to be specifically expressed on the plasma membrane surface of tumor but not normal cells. Although the association of Hsp70 with lipid membranes is well documented the exact mechanisms for chaperone membrane anchoring have not been fully elucidated. Herein, we addressed the question of how Hsp70 interacts with negatively charged phospholipids in artificial lipid compositions employing the X-ray reflectivity (XRR) studies. In a first step, the interactions between dioleoylphosphatidylcholine (DOPC) in the presence or absence of dioleoylphosphatidylserine (DOPS) and Hsp70 had been assessed using Quartz crystal microbalance measurements, suggesting that Hsp70 adsorbs to the surface of DOPC/DOPS bilayer. Atomic force microscopy (AFM) imaging demonstrated that the presence of DOPS is required for stabilization of the lipid bilayer. The interaction of Hsp70 with DOPC/DOPS lipid compositions was further quantitatively determined by high energy X-ray reflectivity. A systematic characterization of the chaperone-lipid membrane interactions by various techniques revealed that artificial membranes can be stabilized by the electrostatic interaction of anionic DOPS lipids with Hsp70.
Collapse
Affiliation(s)
- Ali Makky
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Julian Czajor
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, 69120, Heidelberg, Germany
| | - Oleg Konovalov
- European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Alexander Zhakhov
- Saint-Petersburg Pasteur Institute, Mira Str. 14, 197101, St. Petersburg, Russia
| | - Alexander Ischenko
- Saint-Petersburg Pasteur Institute, Mira Str. 14, 197101, St. Petersburg, Russia
| | - Ankita Behl
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Wasim Abuillan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Maxim Shevtsov
- Klinikum Rechts Der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia.
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341, St. Petersburg, Russia.
| |
Collapse
|
12
|
Tagaeva R, Efimova S, Ischenko A, Zhakhov A, Shevtsov M, Ostroumova O. A new look at Hsp70 activity in phosphatidylserine-enriched membranes: chaperone-induced quasi-interdigitated lipid phase. Sci Rep 2023; 13:19233. [PMID: 37932471 PMCID: PMC10628215 DOI: 10.1038/s41598-023-46131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
70 kDa heat shock protein Hsp70 (also termed HSP70A1A) is the major stress-inducible member of the HSP70 chaperone family, which is present on the plasma membranes of various tumor cells, but not on the membranes of the corresponding normal cells. The exact mechanisms of Hsp70 anchoring in the membrane and its membrane-related functions are still under debate, since the protein does not contain consensus signal sequence responsible for translocation from the cytosol to the lipid bilayer. The present study was focused on the analysis of the interaction of recombinant human Hsp70 with the model phospholipid membranes. We have confirmed that Hsp70 has strong specificity toward membranes composed of negatively charged phosphatidylserine (PS), compared to neutral phosphatidylcholine membranes. Using differential scanning calorimetry, we have shown for the first time that Hsp70 affects the thermotropic behavior of saturated PS and leads to the interdigitation that controls membrane thickness and rigidity. Hsp70-PS interaction depended on the lipid phase state; the protein stabilized ordered domains enriched with high-melting PS, increasing their area, probably due to formation of quasi-interdigitated phase. Moreover, the ability of Hsp70 to form ion-permeable pores in PS membranes may also be determined by the bilayer thickness. These observations contribute to a better understanding of Hsp70-PS interaction and biological functions of membrane-bound Hsp70 in cancer cells.
Collapse
Affiliation(s)
- Ruslana Tagaeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, Saint Petersburg, 197341, Russia
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, Saint Petersburg, 194064, Russia
| | - Svetlana Efimova
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, Saint Petersburg, 194064, Russia
| | - Alexander Ischenko
- Saint-Petersburg Pasteur Institute, Mira Str. 14, Saint Petersburg, 197101, Russia
| | - Alexander Zhakhov
- Saint-Petersburg Pasteur Institute, Mira Str. 14, Saint Petersburg, 197101, Russia
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, Saint Petersburg, 197341, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, Saint Petersburg, 194064, Russia.
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Olga Ostroumova
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, Saint Petersburg, 194064, Russia
| |
Collapse
|
13
|
Moritz MNO, Dores-Silva PR, Coto ALS, Selistre-de-Araújo HS, Leitão A, Cauvi DM, De Maio A, Carra S, Borges JC. Human HSP70-escort protein 1 (hHep1) interacts with negatively charged lipid bilayers and cell membranes. Cell Stress Chaperones 2023; 28:1001-1012. [PMID: 38001371 PMCID: PMC10746634 DOI: 10.1007/s12192-023-01394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Human Hsp70-escort protein 1 (hHep1) is a cochaperone that assists in the function and stability of mitochondrial HSPA9. Similar to HSPA9, hHep1 is located outside the mitochondria and can interact with liposomes. In this study, we further investigated the structural and thermodynamic behavior of interactions between hHep1 and negatively charged liposomes, as well as interactions with cellular membranes. Our results showed that hHep1 interacts peripherally with liposomes formed by phosphatidylserine and cardiolipin and remains partially structured, exhibiting similar affinities for both. In addition, after being added to the cell membrane, recombinant hHep1 was incorporated by cells in a dose-dependent manner. Interestingly, the association of HSPA9 with hHep1 improved the incorporation of these proteins into the lipid bilayer. These results demonstrated that hHep1 can interact with lipids also present in the plasma membrane, indicating roles for this cochaperone outside of mitochondria.
Collapse
Affiliation(s)
- Milene N O Moritz
- São Carlos Institute of Chemistry, University of São Paulo - USP, P.O. Box 780, São Carlos, SP, 13560-970, Brazil
| | - Paulo R Dores-Silva
- São Carlos Institute of Chemistry, University of São Paulo - USP, P.O. Box 780, São Carlos, SP, 13560-970, Brazil
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amanda L S Coto
- São Carlos Institute of Chemistry, University of São Paulo - USP, P.O. Box 780, São Carlos, SP, 13560-970, Brazil
| | | | - Andrei Leitão
- São Carlos Institute of Chemistry, University of São Paulo - USP, P.O. Box 780, São Carlos, SP, 13560-970, Brazil
| | - David M Cauvi
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Antonio De Maio
- Division of Trauma, Critical Care, Burns and Acute Care Surgery, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Júlio Cesar Borges
- São Carlos Institute of Chemistry, University of São Paulo - USP, P.O. Box 780, São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
14
|
Bieńkowska-Tokarczyk A, Stelmaszczyk-Emmel A, Demkow U, Małecki M. Hyperthermia Enhances Adeno-Associated Virus Vector Transduction Efficiency in Melanoma Cells. Curr Issues Mol Biol 2023; 45:8519-8538. [PMID: 37886980 PMCID: PMC10604982 DOI: 10.3390/cimb45100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Gene therapy perfectly fits in the current needs of medicine for patients with melanoma. One of the major challenges of gene therapy is to increase gene transfer. The role of hyperthermia in the improvement of AAV (adeno-associated virus) transduction efficiency has been indicated. The aim of the present study was to assess the transduction efficacy of melanoma cell lines (A375, G-361, and SK-MEL-1) with the use of the rAAV/DJ mosaic vector under hyperthermia conditions. The analysis of changes in the transduction efficacy and expression of HSPs (heat shock proteins) and receptors for AAV was performed. The transduction was performed at 37 °C and at 43 °C (1 h). Hyperthermia enhanced gene transfer in all the tested cell lines. The most efficient transducing cell line under hyperthermia was A375 (increase by 17%). G361 and SK-MEL-1 cells showed an increase of 7%. The changes in the expression of the AAV receptors and HSPs after hyperthermia were observed. A key role in the improvement of gene transfer may be played by AAVR, HSPB1, HSP6, DNAJC4, HSPD1, HSPA8, HSPA9, HSP90AB1, and AHSA1. This study showed the possibility of the use of hyperthermia as a factor enabling the stimulation of cell transduction with rAAV vectors, thereby providing tools for the improvement in the efficacy of gene therapy based on rAAV.
Collapse
Affiliation(s)
- Alicja Bieńkowska-Tokarczyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Medicine and Clinical Immunology of Developmental Age, Faculty of Medicine, Medical University of Warsaw, 63a Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Medicine and Clinical Immunology of Developmental Age, Faculty of Medicine, Medical University of Warsaw, 63a Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
15
|
Mitra A, Bhakta K, Kar A, Roy A, Mohid SA, Ghosh A, Ghosh A. Insight into the biochemical and cell biological function of an intrinsically unstructured heat shock protein, Hsp12 of Ustilago maydis. MOLECULAR PLANT PATHOLOGY 2023; 24:1063-1077. [PMID: 37434353 PMCID: PMC10423329 DOI: 10.1111/mpp.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 07/13/2023]
Abstract
Small heat shock proteins (sHsps) play diverse roles in the stress response and maintenance of cellular functions. The Ustilago maydis genome codes for few sHsps. Among these, Hsp12 has previously been demonstrated to be involved in the pathogenesis of the fungus by our group. In the present study we further investigated the biological function of the protein in the pathogenic development of U. maydis. Analysis of the primary amino acid sequence of Hsp12 in combination with spectroscopic methods to analyse secondary protein structures revealed an intrinsically disordered nature of the protein. We also carried out detailed analysis on the protein aggregation prevention activity associated with Hsp12. Our data suggest Hsp12 has trehalose-dependent protein aggregation prevention activity. Through assaying the interaction of Hsp12 with lipid membranes in vitro we also showed the ability of U. maydis Hsp12 to induce stability in lipid vesicles. U. maydis hsp12 deletion mutants exhibited defects in the endocytosis process and delayed completion of the pathogenic life cycle. Therefore, U. maydis Hsp12 contributes to the pathogenic development of the fungus through its ability to relieve proteotoxic stress during infection as well as its membrane-stabilizing function.
Collapse
Affiliation(s)
- Aroni Mitra
- Division of Plant BiologyBose InstituteKolkataIndia
| | | | - Ankita Kar
- Division of Plant BiologyBose InstituteKolkataIndia
| | - Anisha Roy
- Division of Plant BiologyBose InstituteKolkataIndia
| | | | | | | |
Collapse
|
16
|
Bugajev V, Draberova L, Utekal P, Blazikova M, Tumova M, Draber P. Enhanced Membrane Fluidization and Cholesterol Displacement by 1-Heptanol Inhibit Mast Cell Effector Functions. Cells 2023; 12:2069. [PMID: 37626879 PMCID: PMC10453462 DOI: 10.3390/cells12162069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Signal transduction by the high-affinity IgE receptor (FcεRI) depends on membrane lipid and protein compartmentalization. Recently published data show that cells treated with 1-heptanol, a cell membrane fluidizer, exhibit changes in membrane properties. However, the functional consequences of 1-heptanol-induced changes on mast cell signaling are unknown. This study shows that short-term exposure to 1-heptanol reduces membrane thermal stability and dysregulates mast cell signaling at multiple levels. Cells treated with 1-heptanol exhibited increased lateral mobility and decreased internalization of the FcεRI. However, this did not affect the initial phosphorylation of the FcεRI-β chain and components of the SYK/LAT1/PLCγ1 signaling pathway after antigen activation. In contrast, 1-heptanol inhibited SAPK/JNK phosphorylation and effector functions such as calcium response, degranulation, and cytokine production. Membrane hyperfluidization induced a heat shock-like response via increased expression of the heat shock protein 70, increased lateral diffusion of ORAI1-mCherry, and unsatisfactory performance of STIM1-ORAI1 coupling, as determined by flow-FRET. Furthermore, 1-heptanol inhibited the antigen-induced production of reactive oxygen species and potentiated stress-induced plasma membrane permeability by interfering with heat shock protein 70 activity. The combined data suggest that 1-heptanol-mediated membrane fluidization does not interfere with the earliest biochemical steps of FcεRI signaling, such as phosphorylation of the FcεRI-β chain and components of the SYK/LAT/PLCγ1 signaling pathway, instead inhibiting the FcεRI internalization and mast cell effector functions, including degranulation and cytokine production.
Collapse
Affiliation(s)
- Viktor Bugajev
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Lubica Draberova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Pavol Utekal
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Michaela Blazikova
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Magda Tumova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| |
Collapse
|
17
|
Fabri JHTM, Rocha MC, Fernandes CM, Campanella JEM, da Cunha AF, Del Poeta M, Malavazi I. The Heat Shock Transcription Factor HsfA Plays a Role in Membrane Lipids Biosynthesis Connecting Thermotolerance and Unsaturated Fatty Acid Metabolism in Aspergillus fumigatus. Microbiol Spectr 2023; 11:e0162723. [PMID: 37195179 PMCID: PMC10269545 DOI: 10.1128/spectrum.01627-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
Thermotolerance is a remarkable virulence attribute of Aspergillus fumigatus, but the consequences of heat shock (HS) to the cell membrane of this fungus are unknown, although this structure is one of the first to detect changes in ambient temperature that imposes on the cell a prompt adaptative response. Under high-temperature stress, fungi trigger the HS response controlled by heat shock transcription factors, such as HsfA, which regulates the expression of heat shock proteins. In yeast, smaller amounts of phospholipids with unsaturated fatty acid (FA) chains are synthesized in response to HS, directly affecting plasma membrane composition. The addition of double bonds in saturated FA is catalyzed by Δ9-fatty acid desaturases, whose expression is temperature-modulated. However, the relationship between HS and saturated/unsaturated FA balance in membrane lipids of A. fumigatus in response to HS has not been investigated. Here, we found that HsfA responds to plasma membrane stress and has a role in sphingolipid and phospholipid unsaturated biosynthesis. In addition, we studied the A. fumigatus Δ9-fatty acid desaturase sdeA and discovered that this gene is essential and required for unsaturated FA biosynthesis, although it did not directly affect the total levels of phospholipids and sphingolipids. sdeA depletion significantly sensitizes mature A. fumigatus biofilms to caspofungin. Also, we demonstrate that hsfA controls sdeA expression, while SdeA and Hsp90 physically interact. Our results suggest that HsfA is required for the adaptation of the fungal plasma membrane to HS and point out a sharp relationship between thermotolerance and FA metabolism in A. fumigatus. IMPORTANCE Aspergillus fumigatus causes invasive pulmonary aspergillosis, a life-threatening infection accounting for high mortality rates in immunocompromised patients. The ability of this organism to grow at elevated temperatures is long recognized as an essential attribute for this mold to cause disease. A. fumigatus responds to heat stress by activating heat shock transcription factors and chaperones to orchestrate cellular responses that protect the fungus against damage caused by heat. Concomitantly, the cell membrane must adapt to heat and maintain physical and chemical properties such as the balance between saturated/unsaturated fatty acids. However, how A. fumigatus connects these two physiological responses is unclear. Here, we explain that HsfA affects the synthesis of complex membrane lipids such as phospholipids and sphingolipids and controls the enzyme SdeA, which produces monounsaturated fatty acids, raw material for membrane lipids. These findings suggest that forced dysregulation of saturated/unsaturated fatty acid balance might represent novel strategies for antifungal therapy.
Collapse
Affiliation(s)
- João Henrique Tadini Marilhano Fabri
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Jonatas Erick Maimoni Campanella
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
18
|
Pires CV, Chawla J, Simmons C, Gibbons J, Adams JH. Heat-shock responses: systemic and essential ways of malaria parasite survival. Curr Opin Microbiol 2023; 73:102322. [PMID: 37130502 PMCID: PMC10247345 DOI: 10.1016/j.mib.2023.102322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
Fever is a part of the human innate immune response that contributes to limiting microbial growth and development in many infectious diseases. For the parasite Plasmodium falciparum, survival of febrile temperatures is crucial for its successful propagation in human populations as well as a fundamental aspect of malaria pathogenesis. This review discusses recent insights into the biological complexity of the malaria parasite's heat-shock response, which involves many cellular compartments and essential metabolic processes to alleviate oxidative stress and accumulation of damaged and unfolded proteins. We highlight the overlap between heat-shock and artemisinin resistance responses, while also explaining how the malaria parasite adapts its fever response to fight artemisinin treatment. Additionally, we discuss how this systemic and essential fight for survival can also contribute to parasite transmission to mosquitoes.
Collapse
Affiliation(s)
- Camilla V Pires
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Jyotsna Chawla
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Caroline Simmons
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Justin Gibbons
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, FL, United States; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
19
|
Guo X, Zhang M, Qin J, Li Z, Rankl C, Jiang X, Zhang B, Wang D, Tang J. Revealing the Effect of Photothermal Therapy on Human Breast Cancer Cells: A Combined Study from Mechanical Properties to Membrane HSP70. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21965-21973. [PMID: 37127843 DOI: 10.1021/acsami.3c02964] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hyperthermia-induced overexpression of heat shock protein 70 (HSP70) leads to the thermoresistance of cancer cells and reduces the efficiency of photothermal therapy (PTT). In contrast, cancer cell-specific membrane-associated HSP70 has been proven to activate antitumor immune responses. The dual effect of HSP70 on cancer cells inspires us that in-depth research of membrane HSP70 (mHSP70) during PTT treatment is essential. In this work, a PTT treatment platform for human breast cancer cells (MCF-7 cells) based on a mPEG-NH2-modified polydopamine (PDA)-coated gold nanorod core-shell structure (GNR@PDA-PEG) is developed. Using the force-distance curve-based atomic force microscopy (FD-based AFM), we gain insight into the PTT-induced changes in the morphology, mechanical properties, and mHSP70 expression and distribution of individual MCF-7 cells with high-resolution at the single-cell level. PTT treatment causes pseudopod contraction of MCF-7 cells and generates a high level of intracellular reactive oxygen species, which severely disrupt the cytoskeleton, leading to a decrease in cellular mechanical properties. The adhesion maps, which are recorded by aptamer A8 functional probes using FD-based AFM, reveal that PTT treatment causes a significant upregulation of mHSP70 expression and it starts to exhibit a partial aggregation distribution on the MCF-7 cell surface. This work not only exemplifies that AFM can be a powerful tool for detecting changes in cancer cells during PTT treatment but also provides a better view for targeting mHSP70 for cancer therapy.
Collapse
Affiliation(s)
- Xinyue Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Juan Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Christian Rankl
- Research Center for Non-Destructive Testing GmbH, Science Park 2/2, OG, Altenberger Straße 69, A-4040 Linz, Austria
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Bailin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Dapeng Wang
- University of Science and Technology of China, Hefei 230026, P.R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
20
|
Moon S, Ham S, Jeong J, Ku H, Kim H, Lee C. Temperature Matters: Bacterial Response to Temperature Change. J Microbiol 2023; 61:343-357. [PMID: 37010795 DOI: 10.1007/s12275-023-00031-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 04/04/2023]
Abstract
Temperature is one of the most important factors in all living organisms for survival. Being a unicellular organism, bacterium requires sensitive sensing and defense mechanisms to tolerate changes in temperature. During a temperature shift, the structure and composition of various cellular molecules including nucleic acids, proteins, and membranes are affected. In addition, numerous genes are induced during heat or cold shocks to overcome the cellular stresses, which are known as heat- and cold-shock proteins. In this review, we describe the cellular phenomena that occur with temperature change and bacterial responses from a molecular perspective, mainly in Escherichia coli.
Collapse
Affiliation(s)
- Seongjoon Moon
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Soojeong Ham
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Juwon Jeong
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Heechan Ku
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea.
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
21
|
Esfahanian N, Knoblich CD, Bowman GA, Rezvani K. Mortalin: Protein partners, biological impacts, pathological roles, and therapeutic opportunities. Front Cell Dev Biol 2023; 11:1028519. [PMID: 36819105 PMCID: PMC9932541 DOI: 10.3389/fcell.2023.1028519] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Mortalin (GRP75, HSPA9A), a heat shock protein (HSP), regulates a wide range of cellular processes, including cell survival, growth, and metabolism. The regulatory functions of mortalin are mediated through a diverse set of protein partners associated with different cellular compartments, which allows mortalin to perform critical functions under physiological conditions, including mitochondrial protein quality control. However, alteration of mortalin's activities, its abnormal subcellular compartmentalization, and its protein partners turn mortalin into a disease-driving protein in different pathological conditions, including cancers. Here, mortalin's contributions to tumorigenic pathways are explained. Pathology information based on mortalin's RNA expression extracted from The Cancer Genome Atlas (TCGA) transcriptomic database indicates that mortalin has an independent prognostic value in common tumors, including lung, breast, and colorectal cancer (CRC). Subsequently, the binding partners of mortalin reported in different cellular models, from yeast to mammalian cells, and its regulation by post-translational modifications are discussed. Finally, we focus on colorectal cancer and discuss how mortalin and its tumorigenic downstream protein targets are regulated by a ubiquitin-like protein through the 26S proteasomal degradation machinery. A broader understanding of the function of mortalin and its positive and negative regulation in the formation and progression of human diseases, particularly cancer, is essential for developing new strategies to treat a diverse set of human diseases critically associated with dysregulated mortalin.
Collapse
|
22
|
Salvermoser L, Flisikowski K, Dressel-Böhm S, Nytko KJ, Rohrer Bley C, Schnieke A, Samt AK, Thölke D, Lennartz P, Schwab M, Wang F, Bashiri Dezfouli A, Multhoff G. Elevated circulating Hsp70 levels are correlative for malignancies in different mammalian species. Cell Stress Chaperones 2023; 28:105-118. [PMID: 36399258 PMCID: PMC9877270 DOI: 10.1007/s12192-022-01311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Circulating Hsp70 levels were determined in feline and porcine cohorts using two different ELISA systems. These comparative animal models of larger organisms often reflect diseases, and especially malignant tumors, better than conventional rodent models. It is therefore essential to investigate the biology and utility of tumor biomarkers in animals such as cats and pigs. In this study, levels of free Hsp70 in the blood of cats with spontaneously occurring tumors were detected using a commercial Hsp70 ELISA (R&D Systems). Sub-analysis of different tumor groups revealed that animals with tumors of epithelial origin presented with significantly elevated circulating Hsp70 concentrations. In addition to free Hsp70 levels measured with the R&D Systems Hsp70 ELISA, levels of exosomal Hsp70 were determined using the compHsp70 ELISA in pigs. Both ELISA systems detected significantly elevated Hsp70 levels (R&D Systems: median 24.9 ng/mL; compHsp70: median 44.2 ng/mL) in the blood of a cohort of APC1311/+ pigs diagnosed with high-grade adenoma polyps, and the R&D Systems Hsp70 ELISA detected also elevated Hsp70 levels in animals with low-grade polyps. In contrast, in flTP53R167H pigs, suffering from malignant osteosarcoma, the compHsp70 ELISA (median 674.32 ng/mL), but not the R&D Systems Hsp70 ELISA (median 4.78 ng/mL), determined significantly elevated Hsp70 concentrations, indicating that in tumor-bearing animals, the dominant form of Hsp70 is of exosomal origin. Our data suggest that both ELISA systems are suitable for detecting free circulating Hsp70 levels in pigs with high-grade adenoma, but only the compHsp70 ELISA can measure elevated, tumor-derived exosomal Hsp70 levels in tumor-bearing animals.
Collapse
Affiliation(s)
- Lukas Salvermoser
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany.
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany.
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany.
| | - Krzysztof Flisikowski
- Livestock Biotechnology, School of Live Sciences, Technische Universität München (TUM), Liesel-Beckmannstr 1, 85354, Freising, Germany
| | - Susann Dressel-Böhm
- Vetsuisse Faculty, Division of Radiation Oncology, University of Zurich, Winterthurerstr 258C, CH-8057, Zurich, Switzerland
| | - Katarzyna J Nytko
- Vetsuisse Faculty, Division of Radiation Oncology, University of Zurich, Winterthurerstr 258C, CH-8057, Zurich, Switzerland
| | - Carla Rohrer Bley
- Vetsuisse Faculty, Division of Radiation Oncology, University of Zurich, Winterthurerstr 258C, CH-8057, Zurich, Switzerland
| | - Angelika Schnieke
- Livestock Biotechnology, School of Live Sciences, Technische Universität München (TUM), Liesel-Beckmannstr 1, 85354, Freising, Germany
| | - Ann-Kathrin Samt
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Dennis Thölke
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Philipp Lennartz
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Melissa Schwab
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Fei Wang
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Ali Bashiri Dezfouli
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| |
Collapse
|
23
|
Sagarika P, Yadav K, Sahi C. Volleying plasma membrane proteins from birth to death: Role of J-domain proteins. Front Mol Biosci 2022; 9:1072242. [PMID: 36589230 PMCID: PMC9798423 DOI: 10.3389/fmolb.2022.1072242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The function, stability, and turnover of plasma membrane (PM) proteins are crucial for cellular homeostasis. Compared to soluble proteins, quality control of plasma membrane proteins is extremely challenging. Failure to meet the high quality control standards is detrimental to cellular and organismal health. J-domain proteins (JDPs) are among the most diverse group of chaperones that collaborate with other chaperones and protein degradation machinery to oversee cellular protein quality control (PQC). Although fragmented, the available literature from different models, including yeast, mammals, and plants, suggests that JDPs assist PM proteins with their synthesis, folding, and trafficking to their destination as well as their degradation, either through endocytic or proteasomal degradation pathways. Moreover, some JDPs interact directly with the membrane to regulate the stability and/or functionality of proteins at the PM. The deconvoluted picture emerging is that PM proteins are relayed from one JDP to another throughout their life cycle, further underscoring the versatility of the Hsp70:JDP machinery in the cell.
Collapse
|
24
|
Nguyen PP, Kado T, Prithviraj M, Siegrist MS, Morita YS. Inositol acylation of phosphatidylinositol mannosides: a rapid mass response to membrane fluidization in mycobacteria. J Lipid Res 2022; 63:100262. [PMID: 35952902 PMCID: PMC9490103 DOI: 10.1016/j.jlr.2022.100262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacteria share an unusually complex, multilayered cell envelope, which contributes to adaptation to changing environments. The plasma membrane is the deepest layer of the cell envelope and acts as the final permeability barrier against outside molecules. There is an obvious need to maintain the plasma membrane integrity, but the adaptive responses of the plasma membrane to stress exposure remain poorly understood. Using chemical treatment and heat stress to fluidize the membrane, we show here that phosphatidylinositol (PI)-anchored plasma membrane glycolipids known as PI mannosides (PIMs) are rapidly remodeled upon membrane fluidization in Mycobacterium smegmatis. Without membrane stress, PIMs are predominantly in a triacylated form: two acyl chains of the PI moiety plus one acyl chain modified at one of the mannose residues. Upon membrane fluidization, we determined the fourth fatty acid is added to the inositol moiety of PIMs, making them tetra-acylated variants. Additionally, we show that PIM inositol acylation is a rapid response independent of de novo protein synthesis, representing one of the fastest mass conversions of lipid molecules found in nature. Strikingly, we found that M. smegmatis is more resistant to the bactericidal effect of a cationic detergent after benzyl alcohol pre-exposure. We further demonstrate that fluidization-induced PIM inositol acylation is conserved in pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. Our results demonstrate that mycobacteria possess a mechanism to sense plasma membrane fluidity change. We suggest that inositol acylation of PIMs is a novel membrane stress response that enables mycobacterial cells to resist membrane fluidization.
Collapse
Affiliation(s)
- Peter P Nguyen
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Takehiro Kado
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | | | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
25
|
Csoboz B, Gombos I, Kóta Z, Dukic B, Klement É, Varga-Zsíros V, Lipinszki Z, Páli T, Vígh L, Török Z. The Small Heat Shock Protein, HSPB1, Interacts with and Modulates the Physical Structure of Membranes. Int J Mol Sci 2022; 23:ijms23137317. [PMID: 35806322 PMCID: PMC9266964 DOI: 10.3390/ijms23137317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Small heat shock proteins (sHSPs) have been demonstrated to interact with lipids and modulate the physical state of membranes across species. Through these interactions, sHSPs contribute to the maintenance of membrane integrity. HSPB1 is a major sHSP in mammals, but its lipid interaction profile has so far been unexplored. In this study, we characterized the interaction between HSPB1 and phospholipids. HSPB1 not only associated with membranes via membrane-forming lipids, but also showed a strong affinity towards highly fluid membranes. It participated in the modulation of the physical properties of the interacting membranes by altering rotational and lateral lipid mobility. In addition, the in vivo expression of HSPB1 greatly affected the phase behavior of the plasma membrane under membrane fluidizing stress conditions. In light of our current findings, we propose a new function for HSPB1 as a membrane chaperone.
Collapse
Affiliation(s)
- Balint Csoboz
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
- Institute of Medical Biology, University of Tromsø, 9008 Tromsø, Norway
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Zoltán Kóta
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Z.K.); (T.P.)
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, 6726 Szeged, Hungary
| | - Barbara Dukic
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Éva Klement
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, 6726 Szeged, Hungary
| | - Vanda Varga-Zsíros
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Zoltán Lipinszki
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Tibor Páli
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (Z.K.); (T.P.)
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary; (B.C.); (I.G.); (B.D.); (É.K.); (V.V.-Z.); (Z.L.); (L.V.)
- Correspondence:
| |
Collapse
|
26
|
Maricchiolo E, Panfili E, Pompa A, De Marchis F, Bellucci M, Pallotta MT. Unconventional Pathways of Protein Secretion: Mammals vs. Plants. Front Cell Dev Biol 2022; 10:895853. [PMID: 35573696 PMCID: PMC9096121 DOI: 10.3389/fcell.2022.895853] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
In eukaryotes, many proteins contain an N-terminal signal peptide that allows their translocation into the endoplasmic reticulum followed by secretion outside the cell according to the classical secretory system. However, an increasing number of secreted proteins lacking the signal peptide sequence are emerging. These proteins, secreted in several alternative ways collectively known as unconventional protein secretion (UPS) pathways, exert extracellular functions including cell signaling, immune modulation, as well as moonlighting activities different from their well-described intracellular functions. Pathways for UPS include direct transfer across the plasma membrane, secretion from endosomal/multivesicular body-related components, release within plasma membrane-derived microvesicles, or use of elements of autophagy. In this review we describe the mammals and plants UPS pathways identified so far highlighting commonalities and differences.
Collapse
Affiliation(s)
- Elisa Maricchiolo
- Section of Biological and Biotechnological Sciences, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Eleonora Panfili
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Andrea Pompa
- Section of Biological and Biotechnological Sciences, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources, National Research Council of Italy, Perugia, Italy
| | - Michele Bellucci
- Institute of Biosciences and Bioresources, National Research Council of Italy, Perugia, Italy
- *Correspondence: Michele Bellucci, ; Maria Teresa Pallotta,
| | - Maria Teresa Pallotta
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- *Correspondence: Michele Bellucci, ; Maria Teresa Pallotta,
| |
Collapse
|
27
|
Shukurov I, Mohamed MS, Mizuki T, Palaninathan V, Ukai T, Hanajiri T, Maekawa T. Biological Synthesis of Bioactive Gold Nanoparticles from Inonotus obliquus for Dual Chemo-Photothermal Effects against Human Brain Cancer Cells. Int J Mol Sci 2022; 23:2292. [PMID: 35216406 PMCID: PMC8880898 DOI: 10.3390/ijms23042292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
The possibility for an ecologically friendly and simple production of gold nanoparticles (AuNPs) with Chaga mushroom (Inonotus obliquus) (Ch-AuNPs) is presented in this study. Chaga extract's reducing potential was evaluated at varied concentrations and temperatures. The nanoparticles synthesized were all under 20 nm in size, as measured by TEM, which is a commendable result for a spontaneous synthesis method utilizing a biological source. The Ch-AuNPs showed anti-cancer chemotherapeutic effects on human brain cancer cells which is attributed to the biofunctionalization of the AuNPs with Chaga bioactive components during the synthesis process. Further, the photothermal ablation capability of the as-prepared gold nanoparticles on human brain cancer cells was investigated. It was found that the NIR-laser induced thermal ablation of cancer cells was effective in eliminating over 80% of the cells. This research projects the Ch-AuNPs as promising, dual modal (chemo-photothermal) therapeutic candidates for anti-cancer applications.
Collapse
Affiliation(s)
- Ibrohimjon Shukurov
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan; (I.S.); (T.M.); (V.P.); (T.U.); (T.H.); (T.M.)
| | - Mohamed Sheikh Mohamed
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan; (I.S.); (T.M.); (V.P.); (T.U.); (T.H.); (T.M.)
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585, Japan
| | - Toru Mizuki
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan; (I.S.); (T.M.); (V.P.); (T.U.); (T.H.); (T.M.)
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585, Japan
| | - Vivekanandan Palaninathan
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan; (I.S.); (T.M.); (V.P.); (T.U.); (T.H.); (T.M.)
| | - Tomofumi Ukai
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan; (I.S.); (T.M.); (V.P.); (T.U.); (T.H.); (T.M.)
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585, Japan
| | - Tatsuro Hanajiri
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan; (I.S.); (T.M.); (V.P.); (T.U.); (T.H.); (T.M.)
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585, Japan
| | - Toru Maekawa
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan; (I.S.); (T.M.); (V.P.); (T.U.); (T.H.); (T.M.)
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585, Japan
| |
Collapse
|