1
|
Nakano H, Shiinoki T, Tanabe S, Utsunomiya S, Takizawa T, Kaidu M, Nishio T, Ishikawa H. Mathematical model combined with microdosimetric kinetic model for tumor volume calculation in stereotactic body radiation therapy. Sci Rep 2023; 13:10981. [PMID: 37414844 PMCID: PMC10326039 DOI: 10.1038/s41598-023-38232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023] Open
Abstract
We proposed a new mathematical model that combines an ordinary differential equation (ODE) and microdosimetric kinetic model (MKM) to predict the tumor-cell lethal effect of Stereotactic body radiation therapy (SBRT) applied to non-small cell lung cancer (NSCLC). The tumor growth volume was calculated by the ODE in the multi-component mathematical model (MCM) for the cell lines NSCLC A549 and NCI-H460 (H460). The prescription doses 48 Gy/4 fr and 54 Gy/3 fr were used in the SBRT, and the effect of the SBRT on tumor cells was evaluated by the MKM. We also evaluated the effects of (1) linear quadratic model (LQM) and the MKM, (2) varying the ratio of active and quiescent tumors for the total tumor volume, and (3) the length of the dose-delivery time per fractionated dose (tinter) on the initial tumor volume. We used the ratio of the tumor volume at 1 day after the end of irradiation to the tumor volume before irradiation to define the radiation effectiveness value (REV). The combination of MKM and MCM significantly reduced REV at 48 Gy/4 fr compared to the combination of LQM and MCM. The ratio of active tumors and the prolonging of tinter affected the decrease in the REV for A549 and H460 cells. We evaluated the tumor volume considering a large fractionated dose and the dose-delivery time by combining the MKM with a mathematical model of tumor growth using an ODE in lung SBRT for NSCLC A549 and H460 cells.
Collapse
Affiliation(s)
- Hisashi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan.
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan.
| | - Takehiro Shiinoki
- Department of Radiation Oncology, Yamaguchi University, Minamikogushi 1-1-1 Ube, Yamaguchi, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-Dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Takeshi Takizawa
- Department of Radiation Oncology, Niigata Neurosurgical Hospital, 3057 Yamada, Nishi-ku, Niigata-shi, Niigata, Japan
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| | - Teiji Nishio
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata, Japan
| |
Collapse
|
2
|
Matsuya Y, Tsutsumi K, Sasaki K, Date H. Evaluation of the cell survival curve under radiation exposure based on the kinetics of lesions in relation to dose-delivery time. JOURNAL OF RADIATION RESEARCH 2015; 56:90-9. [PMID: 25355708 PMCID: PMC4572602 DOI: 10.1093/jrr/rru090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/02/2014] [Revised: 09/10/2014] [Accepted: 09/13/2014] [Indexed: 05/23/2023]
Abstract
We have investigated the dose rate effects on cell damage caused by photon-beam irradiation. During a relatively long dose-delivery time with a low dose rate, lesions created in cells may undergo some reactions, such as DNA repair. In order to investigate these reactions quantitatively, we adopted the microdosimetric-kinetic (MK) model and deduced a cell surviving fraction (SF) formula for continuous irradiation. This model enabled us to estimate the SF from dose and dose rate. The parameters in the MK model were determined so as to generate the SF, and we attempted to evaluate the dose rate effects on the SF. To deduce the cell-specific parameters in the SF formula, including the dose rate, we performed a split-dose experiment and a single-dose experiment with a constant dose-delivery time (10 min) (to retain the condition for equivalent behavior of cell lesions) by means of a clonogenic assay. Then, using the MK model parameters, the SFs were reproduced for a variety of dose rates (1.0, 0.31, 0.18, 0.025 and 0.0031 Gy/min) and were compared with reported experimental data. The SF curves predicted by the MK model agreed well with the experimental data, suggesting that the dose rate effects appear in the kinetics of cell lesions during the dose-delivery time. From fitting the analysis of the model formula to the experimental data, it was shown that the MK model could illustrate the characteristics of log-SF in a rectilinear form at a high dose range with a relatively low dose rate.
Collapse
Affiliation(s)
- Yusuke Matsuya
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Kaori Tsutsumi
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| | - Kohei Sasaki
- Faculty of Health Sciences, Hokkaido University of Science, Maeda 7-15, Teine-ku, Sapporo 006-8585, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|